The covering type of closed surfaces and minimal triangulations
- Autores
- Borghini, Eugenio; Minian, Elias Gabriel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The notion of covering type was recently introduced by Karoubi and Weibel to measure the complexity of a topological space by means of good coverings. When X has the homotopy type of a finite CW-complex, its covering type coincides with the minimum possible number of vertices of a simplicial complex homotopy equivalent to X. In this article we compute the covering type of all closed surfaces. Our results completely settle a problem posed by Karoubi and Weibel, and shed more light on the relationship between the topology of surfaces and the number of vertices of minimal triangulations from a homotopy point of view.
Fil: Borghini, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
COVERING TYPE
MINIMAL TRIANGULATIONS
SURFACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117919
Ver los metadatos del registro completo
id |
CONICETDig_c432615849407690396b9f78047efd2b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117919 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The covering type of closed surfaces and minimal triangulationsBorghini, EugenioMinian, Elias GabrielCOVERING TYPEMINIMAL TRIANGULATIONSSURFACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The notion of covering type was recently introduced by Karoubi and Weibel to measure the complexity of a topological space by means of good coverings. When X has the homotopy type of a finite CW-complex, its covering type coincides with the minimum possible number of vertices of a simplicial complex homotopy equivalent to X. In this article we compute the covering type of all closed surfaces. Our results completely settle a problem posed by Karoubi and Weibel, and shed more light on the relationship between the topology of surfaces and the number of vertices of minimal triangulations from a homotopy point of view.Fil: Borghini, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAcademic Press Inc Elsevier Science2019-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117919Borghini, Eugenio; Minian, Elias Gabriel; The covering type of closed surfaces and minimal triangulations; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 166; 8-2019; 1-100097-3165CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcta.2019.02.005info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0097316519300202?via%3Dihubinfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1712.02833info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:17Zoai:ri.conicet.gov.ar:11336/117919instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:17.819CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The covering type of closed surfaces and minimal triangulations |
title |
The covering type of closed surfaces and minimal triangulations |
spellingShingle |
The covering type of closed surfaces and minimal triangulations Borghini, Eugenio COVERING TYPE MINIMAL TRIANGULATIONS SURFACES |
title_short |
The covering type of closed surfaces and minimal triangulations |
title_full |
The covering type of closed surfaces and minimal triangulations |
title_fullStr |
The covering type of closed surfaces and minimal triangulations |
title_full_unstemmed |
The covering type of closed surfaces and minimal triangulations |
title_sort |
The covering type of closed surfaces and minimal triangulations |
dc.creator.none.fl_str_mv |
Borghini, Eugenio Minian, Elias Gabriel |
author |
Borghini, Eugenio |
author_facet |
Borghini, Eugenio Minian, Elias Gabriel |
author_role |
author |
author2 |
Minian, Elias Gabriel |
author2_role |
author |
dc.subject.none.fl_str_mv |
COVERING TYPE MINIMAL TRIANGULATIONS SURFACES |
topic |
COVERING TYPE MINIMAL TRIANGULATIONS SURFACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The notion of covering type was recently introduced by Karoubi and Weibel to measure the complexity of a topological space by means of good coverings. When X has the homotopy type of a finite CW-complex, its covering type coincides with the minimum possible number of vertices of a simplicial complex homotopy equivalent to X. In this article we compute the covering type of all closed surfaces. Our results completely settle a problem posed by Karoubi and Weibel, and shed more light on the relationship between the topology of surfaces and the number of vertices of minimal triangulations from a homotopy point of view. Fil: Borghini, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Minian, Elias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
The notion of covering type was recently introduced by Karoubi and Weibel to measure the complexity of a topological space by means of good coverings. When X has the homotopy type of a finite CW-complex, its covering type coincides with the minimum possible number of vertices of a simplicial complex homotopy equivalent to X. In this article we compute the covering type of all closed surfaces. Our results completely settle a problem posed by Karoubi and Weibel, and shed more light on the relationship between the topology of surfaces and the number of vertices of minimal triangulations from a homotopy point of view. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117919 Borghini, Eugenio; Minian, Elias Gabriel; The covering type of closed surfaces and minimal triangulations; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 166; 8-2019; 1-10 0097-3165 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117919 |
identifier_str_mv |
Borghini, Eugenio; Minian, Elias Gabriel; The covering type of closed surfaces and minimal triangulations; Academic Press Inc Elsevier Science; Journal of Combinatorial Theory Series A; 166; 8-2019; 1-10 0097-3165 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcta.2019.02.005 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0097316519300202?via%3Dihub info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1712.02833 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613577754804224 |
score |
13.070432 |