Degrees of irreducible morphisms and finite-representation type
- Autores
- Chaio, Claudia Alicia; Le Meur, Patrick; Trepode, Sonia Elisabet
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the degree of irreducible morphisms in any Auslander-Reiten component of a finite dimensional algebra over an algebraically closed field. We give a characterization for an irreducible morphism to have finite left (or right) degree in terms of the existence of certain annihilator maps. This is used to prove our main theorem: An algebra is of finite representation type if and only if for every indecomposable projective the inclusion of the radical in the projective has finite right degree, which is equivalent to requiring that for every indecomposable injective the epimorphism from the injective to its quotient by its socle has finite left degree. As an application of the techniques we develop, we study the behavior of the composite of paths of irreducible morphisms between indecomposable modules.
Fil: Chaio, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Le Meur, Patrick. Universite Blaise Pascal; Francia
Fil: Trepode, Sonia Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
DEGREES
COVERING
COMPOSITION
FINITE REPRESENTATION TYPE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/245636
Ver los metadatos del registro completo
| id |
CONICETDig_3482bd5f7b7b10caef16dd1406dd74ca |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/245636 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Degrees of irreducible morphisms and finite-representation typeChaio, Claudia AliciaLe Meur, PatrickTrepode, Sonia ElisabetDEGREESCOVERINGCOMPOSITIONFINITE REPRESENTATION TYPEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the degree of irreducible morphisms in any Auslander-Reiten component of a finite dimensional algebra over an algebraically closed field. We give a characterization for an irreducible morphism to have finite left (or right) degree in terms of the existence of certain annihilator maps. This is used to prove our main theorem: An algebra is of finite representation type if and only if for every indecomposable projective the inclusion of the radical in the projective has finite right degree, which is equivalent to requiring that for every indecomposable injective the epimorphism from the injective to its quotient by its socle has finite left degree. As an application of the techniques we develop, we study the behavior of the composite of paths of irreducible morphisms between indecomposable modules.Fil: Chaio, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Le Meur, Patrick. Universite Blaise Pascal; FranciaFil: Trepode, Sonia Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaOxford University Press2011-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/245636Chaio, Claudia Alicia; Le Meur, Patrick; Trepode, Sonia Elisabet; Degrees of irreducible morphisms and finite-representation type; Oxford University Press; Journal of the London Mathematical Society; 84; 1; 8-2011; 35-570024-6107CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/jdq104info:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jdq104info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T10:25:57Zoai:ri.conicet.gov.ar:11336/245636instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 10:25:57.387CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Degrees of irreducible morphisms and finite-representation type |
| title |
Degrees of irreducible morphisms and finite-representation type |
| spellingShingle |
Degrees of irreducible morphisms and finite-representation type Chaio, Claudia Alicia DEGREES COVERING COMPOSITION FINITE REPRESENTATION TYPE |
| title_short |
Degrees of irreducible morphisms and finite-representation type |
| title_full |
Degrees of irreducible morphisms and finite-representation type |
| title_fullStr |
Degrees of irreducible morphisms and finite-representation type |
| title_full_unstemmed |
Degrees of irreducible morphisms and finite-representation type |
| title_sort |
Degrees of irreducible morphisms and finite-representation type |
| dc.creator.none.fl_str_mv |
Chaio, Claudia Alicia Le Meur, Patrick Trepode, Sonia Elisabet |
| author |
Chaio, Claudia Alicia |
| author_facet |
Chaio, Claudia Alicia Le Meur, Patrick Trepode, Sonia Elisabet |
| author_role |
author |
| author2 |
Le Meur, Patrick Trepode, Sonia Elisabet |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
DEGREES COVERING COMPOSITION FINITE REPRESENTATION TYPE |
| topic |
DEGREES COVERING COMPOSITION FINITE REPRESENTATION TYPE |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We study the degree of irreducible morphisms in any Auslander-Reiten component of a finite dimensional algebra over an algebraically closed field. We give a characterization for an irreducible morphism to have finite left (or right) degree in terms of the existence of certain annihilator maps. This is used to prove our main theorem: An algebra is of finite representation type if and only if for every indecomposable projective the inclusion of the radical in the projective has finite right degree, which is equivalent to requiring that for every indecomposable injective the epimorphism from the injective to its quotient by its socle has finite left degree. As an application of the techniques we develop, we study the behavior of the composite of paths of irreducible morphisms between indecomposable modules. Fil: Chaio, Claudia Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Le Meur, Patrick. Universite Blaise Pascal; Francia Fil: Trepode, Sonia Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
| description |
We study the degree of irreducible morphisms in any Auslander-Reiten component of a finite dimensional algebra over an algebraically closed field. We give a characterization for an irreducible morphism to have finite left (or right) degree in terms of the existence of certain annihilator maps. This is used to prove our main theorem: An algebra is of finite representation type if and only if for every indecomposable projective the inclusion of the radical in the projective has finite right degree, which is equivalent to requiring that for every indecomposable injective the epimorphism from the injective to its quotient by its socle has finite left degree. As an application of the techniques we develop, we study the behavior of the composite of paths of irreducible morphisms between indecomposable modules. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-08 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/245636 Chaio, Claudia Alicia; Le Meur, Patrick; Trepode, Sonia Elisabet; Degrees of irreducible morphisms and finite-representation type; Oxford University Press; Journal of the London Mathematical Society; 84; 1; 8-2011; 35-57 0024-6107 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/245636 |
| identifier_str_mv |
Chaio, Claudia Alicia; Le Meur, Patrick; Trepode, Sonia Elisabet; Degrees of irreducible morphisms and finite-representation type; Oxford University Press; Journal of the London Mathematical Society; 84; 1; 8-2011; 35-57 0024-6107 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://londmathsoc.onlinelibrary.wiley.com/doi/abs/10.1112/jlms/jdq104 info:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jdq104 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Oxford University Press |
| publisher.none.fl_str_mv |
Oxford University Press |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977902590656512 |
| score |
13.084122 |