Inequalities related to Bourin and Heinz means with a complex parameter
- Autores
- Bottazzi, Tamara Paula; Elencwajg, René; Larotonda, Gabriel Andrés; Varela, Alejandro
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A conjecture posed by S. Hayajneh and F. Kittaneh claims that given A, B positive matrices, 0≤t≤1, and any unitarily invariant norm the following inequality holds{triple vertical-rule fence}AtB1-t+BtA1-t{triple vertical-rule fence}≤{triple vertical-rule fence}AtB1-t+A1-tBt{triple vertical-rule fence}. Recently, R. Bhatia proved the inequality for the case of the Frobenius norm and for t∈[14,34]. In this paper, using complex methods we extend this result to complex values of the parameter t=z in the strip {z∈C:Re(z)∈[14,34]}. We give an elementary proof of the fact that equality holds for some z in the strip if and only if A and B commute. We also show a counterexample to the general conjecture by exhibiting a pair of positive matrices such that the claim does not hold for the uniform norm. Finally, we give a counterexample for a related singular value inequality given by s(AtB1-t+BtA1-t)≤sj(A+B), answering in the negative a question made by K. Audenaert and F. Kittaneh. The methods of proof and examples can be adapted with no modifications to operator algebras (infinite dimensional setting), for instance it follows that the inequality above holds for Hilbert-Schmidt operators with their Banach algebra norm derived from the infinite trace of B(H).
Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Elencwajg, René. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Varela, Alejandro. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
COMPLEX METHODS
FROBENIUS NORM
HEINZ MEAN
NORM INEQUALITY
TRACIAL ALGEBRA
UNITARILY INVARIANT NORM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98215
Ver los metadatos del registro completo
id |
CONICETDig_3a0eb2a42049963ac2e213d28470ad55 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98215 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inequalities related to Bourin and Heinz means with a complex parameterBottazzi, Tamara PaulaElencwajg, RenéLarotonda, Gabriel AndrésVarela, AlejandroCOMPLEX METHODSFROBENIUS NORMHEINZ MEANNORM INEQUALITYTRACIAL ALGEBRAUNITARILY INVARIANT NORMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A conjecture posed by S. Hayajneh and F. Kittaneh claims that given A, B positive matrices, 0≤t≤1, and any unitarily invariant norm the following inequality holds{triple vertical-rule fence}AtB1-t+BtA1-t{triple vertical-rule fence}≤{triple vertical-rule fence}AtB1-t+A1-tBt{triple vertical-rule fence}. Recently, R. Bhatia proved the inequality for the case of the Frobenius norm and for t∈[14,34]. In this paper, using complex methods we extend this result to complex values of the parameter t=z in the strip {z∈C:Re(z)∈[14,34]}. We give an elementary proof of the fact that equality holds for some z in the strip if and only if A and B commute. We also show a counterexample to the general conjecture by exhibiting a pair of positive matrices such that the claim does not hold for the uniform norm. Finally, we give a counterexample for a related singular value inequality given by s(AtB1-t+BtA1-t)≤sj(A+B), answering in the negative a question made by K. Audenaert and F. Kittaneh. The methods of proof and examples can be adapted with no modifications to operator algebras (infinite dimensional setting), for instance it follows that the inequality above holds for Hilbert-Schmidt operators with their Banach algebra norm derived from the infinite trace of B(H).Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Elencwajg, René. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Varela, Alejandro. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAcademic Press Inc Elsevier Science2015-06-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98215Bottazzi, Tamara Paula; Elencwajg, René; Larotonda, Gabriel Andrés; Varela, Alejandro; Inequalities related to Bourin and Heinz means with a complex parameter; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 426; 2; 15-6-2015; 765-7730022-247X1096-0813CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15000657#info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.01.046info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1403.7472info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:49Zoai:ri.conicet.gov.ar:11336/98215instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:49.984CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inequalities related to Bourin and Heinz means with a complex parameter |
title |
Inequalities related to Bourin and Heinz means with a complex parameter |
spellingShingle |
Inequalities related to Bourin and Heinz means with a complex parameter Bottazzi, Tamara Paula COMPLEX METHODS FROBENIUS NORM HEINZ MEAN NORM INEQUALITY TRACIAL ALGEBRA UNITARILY INVARIANT NORM |
title_short |
Inequalities related to Bourin and Heinz means with a complex parameter |
title_full |
Inequalities related to Bourin and Heinz means with a complex parameter |
title_fullStr |
Inequalities related to Bourin and Heinz means with a complex parameter |
title_full_unstemmed |
Inequalities related to Bourin and Heinz means with a complex parameter |
title_sort |
Inequalities related to Bourin and Heinz means with a complex parameter |
dc.creator.none.fl_str_mv |
Bottazzi, Tamara Paula Elencwajg, René Larotonda, Gabriel Andrés Varela, Alejandro |
author |
Bottazzi, Tamara Paula |
author_facet |
Bottazzi, Tamara Paula Elencwajg, René Larotonda, Gabriel Andrés Varela, Alejandro |
author_role |
author |
author2 |
Elencwajg, René Larotonda, Gabriel Andrés Varela, Alejandro |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
COMPLEX METHODS FROBENIUS NORM HEINZ MEAN NORM INEQUALITY TRACIAL ALGEBRA UNITARILY INVARIANT NORM |
topic |
COMPLEX METHODS FROBENIUS NORM HEINZ MEAN NORM INEQUALITY TRACIAL ALGEBRA UNITARILY INVARIANT NORM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A conjecture posed by S. Hayajneh and F. Kittaneh claims that given A, B positive matrices, 0≤t≤1, and any unitarily invariant norm the following inequality holds{triple vertical-rule fence}AtB1-t+BtA1-t{triple vertical-rule fence}≤{triple vertical-rule fence}AtB1-t+A1-tBt{triple vertical-rule fence}. Recently, R. Bhatia proved the inequality for the case of the Frobenius norm and for t∈[14,34]. In this paper, using complex methods we extend this result to complex values of the parameter t=z in the strip {z∈C:Re(z)∈[14,34]}. We give an elementary proof of the fact that equality holds for some z in the strip if and only if A and B commute. We also show a counterexample to the general conjecture by exhibiting a pair of positive matrices such that the claim does not hold for the uniform norm. Finally, we give a counterexample for a related singular value inequality given by s(AtB1-t+BtA1-t)≤sj(A+B), answering in the negative a question made by K. Audenaert and F. Kittaneh. The methods of proof and examples can be adapted with no modifications to operator algebras (infinite dimensional setting), for instance it follows that the inequality above holds for Hilbert-Schmidt operators with their Banach algebra norm derived from the infinite trace of B(H). Fil: Bottazzi, Tamara Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Elencwajg, René. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Larotonda, Gabriel Andrés. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Varela, Alejandro. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
A conjecture posed by S. Hayajneh and F. Kittaneh claims that given A, B positive matrices, 0≤t≤1, and any unitarily invariant norm the following inequality holds{triple vertical-rule fence}AtB1-t+BtA1-t{triple vertical-rule fence}≤{triple vertical-rule fence}AtB1-t+A1-tBt{triple vertical-rule fence}. Recently, R. Bhatia proved the inequality for the case of the Frobenius norm and for t∈[14,34]. In this paper, using complex methods we extend this result to complex values of the parameter t=z in the strip {z∈C:Re(z)∈[14,34]}. We give an elementary proof of the fact that equality holds for some z in the strip if and only if A and B commute. We also show a counterexample to the general conjecture by exhibiting a pair of positive matrices such that the claim does not hold for the uniform norm. Finally, we give a counterexample for a related singular value inequality given by s(AtB1-t+BtA1-t)≤sj(A+B), answering in the negative a question made by K. Audenaert and F. Kittaneh. The methods of proof and examples can be adapted with no modifications to operator algebras (infinite dimensional setting), for instance it follows that the inequality above holds for Hilbert-Schmidt operators with their Banach algebra norm derived from the infinite trace of B(H). |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98215 Bottazzi, Tamara Paula; Elencwajg, René; Larotonda, Gabriel Andrés; Varela, Alejandro; Inequalities related to Bourin and Heinz means with a complex parameter; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 426; 2; 15-6-2015; 765-773 0022-247X 1096-0813 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98215 |
identifier_str_mv |
Bottazzi, Tamara Paula; Elencwajg, René; Larotonda, Gabriel Andrés; Varela, Alejandro; Inequalities related to Bourin and Heinz means with a complex parameter; Academic Press Inc Elsevier Science; Journal of Mathematical Analysis and Applications; 426; 2; 15-6-2015; 765-773 0022-247X 1096-0813 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X15000657# info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2015.01.046 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1403.7472 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613980912353280 |
score |
13.070432 |