The unique continuation property for a nonlinear equation on trees

Autores
del Pezzo, Leandro Martin; Mosquera, Carolina Alejandra; Rossi, Julio Daniel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper, we study the game p-Laplacian on a tree, that is, u(x) = α / 2 max y∈S(x) u(y) + min y∈S(x) u(y) + β m y∈S(x) u(y);here x is a vertex of the tree and S(x) is the set of successors of x. We study the family of the subsets of the tree that enjoy the unique continuation property, that is, subsets U such that u |U = 0 implies u ≡ 0.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mosquera, Carolina Alejandra. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
UNIQUE CONTINUATION PROPERTY
TREES
p-HARMONIOUS FUNCTIONS
TUG-OF-WAR GAMES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/30515

id CONICETDig_c3d986f583e20534b05433b5d2dbd469
oai_identifier_str oai:ri.conicet.gov.ar:11336/30515
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The unique continuation property for a nonlinear equation on treesdel Pezzo, Leandro MartinMosquera, Carolina AlejandraRossi, Julio DanielUNIQUE CONTINUATION PROPERTYTREESp-HARMONIOUS FUNCTIONSTUG-OF-WAR GAMEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study the game p-Laplacian on a tree, that is, u(x) = α / 2 max y∈S(x) u(y) + min y∈S(x) u(y) + β m y∈S(x) u(y);here x is a vertex of the tree and S(x) is the set of successors of x. We study the family of the subsets of the tree that enjoy the unique continuation property, that is, subsets U such that u |U = 0 implies u ≡ 0.Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mosquera, Carolina Alejandra. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30515del Pezzo, Leandro Martin; Mosquera, Carolina Alejandra; Rossi, Julio Daniel; The unique continuation property for a nonlinear equation on trees; Wiley; Journal Of The London Mathematical Society-second Series; 89; 2; 1-2014; 364-3820024-6107CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jdt067info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/jlms/jdt067/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:19Zoai:ri.conicet.gov.ar:11336/30515instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:19.787CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The unique continuation property for a nonlinear equation on trees
title The unique continuation property for a nonlinear equation on trees
spellingShingle The unique continuation property for a nonlinear equation on trees
del Pezzo, Leandro Martin
UNIQUE CONTINUATION PROPERTY
TREES
p-HARMONIOUS FUNCTIONS
TUG-OF-WAR GAMES
title_short The unique continuation property for a nonlinear equation on trees
title_full The unique continuation property for a nonlinear equation on trees
title_fullStr The unique continuation property for a nonlinear equation on trees
title_full_unstemmed The unique continuation property for a nonlinear equation on trees
title_sort The unique continuation property for a nonlinear equation on trees
dc.creator.none.fl_str_mv del Pezzo, Leandro Martin
Mosquera, Carolina Alejandra
Rossi, Julio Daniel
author del Pezzo, Leandro Martin
author_facet del Pezzo, Leandro Martin
Mosquera, Carolina Alejandra
Rossi, Julio Daniel
author_role author
author2 Mosquera, Carolina Alejandra
Rossi, Julio Daniel
author2_role author
author
dc.subject.none.fl_str_mv UNIQUE CONTINUATION PROPERTY
TREES
p-HARMONIOUS FUNCTIONS
TUG-OF-WAR GAMES
topic UNIQUE CONTINUATION PROPERTY
TREES
p-HARMONIOUS FUNCTIONS
TUG-OF-WAR GAMES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper, we study the game p-Laplacian on a tree, that is, u(x) = α / 2 max y∈S(x) u(y) + min y∈S(x) u(y) + β m y∈S(x) u(y);here x is a vertex of the tree and S(x) is the set of successors of x. We study the family of the subsets of the tree that enjoy the unique continuation property, that is, subsets U such that u |U = 0 implies u ≡ 0.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Mosquera, Carolina Alejandra. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rossi, Julio Daniel. Universidad de Alicante; España. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In this paper, we study the game p-Laplacian on a tree, that is, u(x) = α / 2 max y∈S(x) u(y) + min y∈S(x) u(y) + β m y∈S(x) u(y);here x is a vertex of the tree and S(x) is the set of successors of x. We study the family of the subsets of the tree that enjoy the unique continuation property, that is, subsets U such that u |U = 0 implies u ≡ 0.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/30515
del Pezzo, Leandro Martin; Mosquera, Carolina Alejandra; Rossi, Julio Daniel; The unique continuation property for a nonlinear equation on trees; Wiley; Journal Of The London Mathematical Society-second Series; 89; 2; 1-2014; 364-382
0024-6107
CONICET Digital
CONICET
url http://hdl.handle.net/11336/30515
identifier_str_mv del Pezzo, Leandro Martin; Mosquera, Carolina Alejandra; Rossi, Julio Daniel; The unique continuation property for a nonlinear equation on trees; Wiley; Journal Of The London Mathematical Society-second Series; 89; 2; 1-2014; 364-382
0024-6107
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1112/jlms/jdt067
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1112/jlms/jdt067/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613474651471872
score 13.070432