Obstacle problem and maximal operators
- Autores
- Blanc, Pablo; Pinasco, Juan Pablo; Rossi, Julio Daniel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fix two differential operators L1 and L2, and define a sequence of functions inductively by considering u1 as the solution to the Dirichlet problem for an operator L1 and then un as the solution to the obstacle problem for an operator Li (i=1,2 alternating them) with obstacle given by the previous term un−1 in a domain Ω and a fixed boundary datum g on ∂Ω. We show that in this way we obtain an increasing sequence that converges uniformly to a viscosity solution to the minimal operator associated with L1 and L2, that is, the limit u verifies min{L1u,L2u}=0 in Ω with u=g on ∂Ω.
Fil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina - Materia
-
tug of war
maximal operators
obstable problem
fully nonlinear operators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55423
Ver los metadatos del registro completo
id |
CONICETDig_117f35503aeede9bd077e6158ca04125 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55423 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Obstacle problem and maximal operatorsBlanc, PabloPinasco, Juan PabloRossi, Julio Danieltug of warmaximal operatorsobstable problemfully nonlinear operatorshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Fix two differential operators L1 and L2, and define a sequence of functions inductively by considering u1 as the solution to the Dirichlet problem for an operator L1 and then un as the solution to the obstacle problem for an operator Li (i=1,2 alternating them) with obstacle given by the previous term un−1 in a domain Ω and a fixed boundary datum g on ∂Ω. We show that in this way we obtain an increasing sequence that converges uniformly to a viscosity solution to the minimal operator associated with L1 and L2, that is, the limit u verifies min{L1u,L2u}=0 in Ω with u=g on ∂Ω.Fil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaDe Gruyter2016-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55423Blanc, Pablo; Pinasco, Juan Pablo; Rossi, Julio Daniel; Obstacle problem and maximal operators; De Gruyter; Advanced Nonlinear Studies; 16; 2; 1-2016; 355-3621536-1365CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2015-5044info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.ahead-of-print/ans-2015-5044/ans-2015-5044.xmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:29Zoai:ri.conicet.gov.ar:11336/55423instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:30.079CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Obstacle problem and maximal operators |
title |
Obstacle problem and maximal operators |
spellingShingle |
Obstacle problem and maximal operators Blanc, Pablo tug of war maximal operators obstable problem fully nonlinear operators |
title_short |
Obstacle problem and maximal operators |
title_full |
Obstacle problem and maximal operators |
title_fullStr |
Obstacle problem and maximal operators |
title_full_unstemmed |
Obstacle problem and maximal operators |
title_sort |
Obstacle problem and maximal operators |
dc.creator.none.fl_str_mv |
Blanc, Pablo Pinasco, Juan Pablo Rossi, Julio Daniel |
author |
Blanc, Pablo |
author_facet |
Blanc, Pablo Pinasco, Juan Pablo Rossi, Julio Daniel |
author_role |
author |
author2 |
Pinasco, Juan Pablo Rossi, Julio Daniel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
tug of war maximal operators obstable problem fully nonlinear operators |
topic |
tug of war maximal operators obstable problem fully nonlinear operators |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Fix two differential operators L1 and L2, and define a sequence of functions inductively by considering u1 as the solution to the Dirichlet problem for an operator L1 and then un as the solution to the obstacle problem for an operator Li (i=1,2 alternating them) with obstacle given by the previous term un−1 in a domain Ω and a fixed boundary datum g on ∂Ω. We show that in this way we obtain an increasing sequence that converges uniformly to a viscosity solution to the minimal operator associated with L1 and L2, that is, the limit u verifies min{L1u,L2u}=0 in Ω with u=g on ∂Ω. Fil: Blanc, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Pinasco, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina |
description |
Fix two differential operators L1 and L2, and define a sequence of functions inductively by considering u1 as the solution to the Dirichlet problem for an operator L1 and then un as the solution to the obstacle problem for an operator Li (i=1,2 alternating them) with obstacle given by the previous term un−1 in a domain Ω and a fixed boundary datum g on ∂Ω. We show that in this way we obtain an increasing sequence that converges uniformly to a viscosity solution to the minimal operator associated with L1 and L2, that is, the limit u verifies min{L1u,L2u}=0 in Ω with u=g on ∂Ω. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55423 Blanc, Pablo; Pinasco, Juan Pablo; Rossi, Julio Daniel; Obstacle problem and maximal operators; De Gruyter; Advanced Nonlinear Studies; 16; 2; 1-2016; 355-362 1536-1365 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55423 |
identifier_str_mv |
Blanc, Pablo; Pinasco, Juan Pablo; Rossi, Julio Daniel; Obstacle problem and maximal operators; De Gruyter; Advanced Nonlinear Studies; 16; 2; 1-2016; 355-362 1536-1365 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2015-5044 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/j/ans.ahead-of-print/ans-2015-5044/ans-2015-5044.xml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613144697110528 |
score |
13.070432 |