Thermostatistics of small systems: exact results in the microcanonical formalism

Autores
Miranda, Enrique Nestor; Bertoldi, Dalía Surena
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Several approximations are made to study the microcanonical formalism that are valid in the thermodynamics limit. Usually it is assumed that: (1) Stirling’s approximation can be used to evaluate the number of microstates; (2) the surface entropy can be replaced by the volume entropy; and (3) derivatives can be used even if the energy is not a continuous variable. It is also assumed that the results obtained from the microcanonical formalism agree with those from the canonical one. However, it is not clear if these assumptions are right for very small systems (10–100 particles). To answer this question, two systems with exact solutions (the Einstein model of the solid and the two-level system) have been solved with and without these approximations.
Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Científico Tecnológico Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Departamento de Fisica; Argentina
Fil: Bertoldi, Dalía Surena. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Científico Tecnológico Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Materia
STATISTICAL MECHANICS
MICROCANONICAL FORMALISM
EINSTEIN SOLID
TWO LEVEL SYSTEM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5829

id CONICETDig_c27ed9b7a97ff99d3b2bd6893f8e753b
oai_identifier_str oai:ri.conicet.gov.ar:11336/5829
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Thermostatistics of small systems: exact results in the microcanonical formalismMiranda, Enrique NestorBertoldi, Dalía SurenaSTATISTICAL MECHANICSMICROCANONICAL FORMALISMEINSTEIN SOLIDTWO LEVEL SYSTEMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Several approximations are made to study the microcanonical formalism that are valid in the thermodynamics limit. Usually it is assumed that: (1) Stirling’s approximation can be used to evaluate the number of microstates; (2) the surface entropy can be replaced by the volume entropy; and (3) derivatives can be used even if the energy is not a continuous variable. It is also assumed that the results obtained from the microcanonical formalism agree with those from the canonical one. However, it is not clear if these assumptions are right for very small systems (10–100 particles). To answer this question, two systems with exact solutions (the Einstein model of the solid and the two-level system) have been solved with and without these approximations.Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Científico Tecnológico Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Departamento de Fisica; ArgentinaFil: Bertoldi, Dalía Surena. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Científico Tecnológico Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaIOP Publishing2013-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5829Miranda, Enrique Nestor; Bertoldi, Dalía Surena; Thermostatistics of small systems: exact results in the microcanonical formalism; IOP Publishing; European Journal of Physics; 34; 5-2013; 1075-10870143-0807enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/0143-0807/34/4/1075/info:eu-repo/semantics/altIdentifier/arxiv/1509.09300v1info:eu-repo/semantics/altIdentifier/doi/10.1088/0143-0807/34/4/1075info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1509.09300v1info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:41Zoai:ri.conicet.gov.ar:11336/5829instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:41.372CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Thermostatistics of small systems: exact results in the microcanonical formalism
title Thermostatistics of small systems: exact results in the microcanonical formalism
spellingShingle Thermostatistics of small systems: exact results in the microcanonical formalism
Miranda, Enrique Nestor
STATISTICAL MECHANICS
MICROCANONICAL FORMALISM
EINSTEIN SOLID
TWO LEVEL SYSTEM
title_short Thermostatistics of small systems: exact results in the microcanonical formalism
title_full Thermostatistics of small systems: exact results in the microcanonical formalism
title_fullStr Thermostatistics of small systems: exact results in the microcanonical formalism
title_full_unstemmed Thermostatistics of small systems: exact results in the microcanonical formalism
title_sort Thermostatistics of small systems: exact results in the microcanonical formalism
dc.creator.none.fl_str_mv Miranda, Enrique Nestor
Bertoldi, Dalía Surena
author Miranda, Enrique Nestor
author_facet Miranda, Enrique Nestor
Bertoldi, Dalía Surena
author_role author
author2 Bertoldi, Dalía Surena
author2_role author
dc.subject.none.fl_str_mv STATISTICAL MECHANICS
MICROCANONICAL FORMALISM
EINSTEIN SOLID
TWO LEVEL SYSTEM
topic STATISTICAL MECHANICS
MICROCANONICAL FORMALISM
EINSTEIN SOLID
TWO LEVEL SYSTEM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Several approximations are made to study the microcanonical formalism that are valid in the thermodynamics limit. Usually it is assumed that: (1) Stirling’s approximation can be used to evaluate the number of microstates; (2) the surface entropy can be replaced by the volume entropy; and (3) derivatives can be used even if the energy is not a continuous variable. It is also assumed that the results obtained from the microcanonical formalism agree with those from the canonical one. However, it is not clear if these assumptions are right for very small systems (10–100 particles). To answer this question, two systems with exact solutions (the Einstein model of the solid and the two-level system) have been solved with and without these approximations.
Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Científico Tecnológico Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Universidad Nacional de San Luis. Facultad de Cs.fisico Matematicas y Naturales. Departamento de Fisica; Argentina
Fil: Bertoldi, Dalía Surena. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Científico Tecnológico Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
description Several approximations are made to study the microcanonical formalism that are valid in the thermodynamics limit. Usually it is assumed that: (1) Stirling’s approximation can be used to evaluate the number of microstates; (2) the surface entropy can be replaced by the volume entropy; and (3) derivatives can be used even if the energy is not a continuous variable. It is also assumed that the results obtained from the microcanonical formalism agree with those from the canonical one. However, it is not clear if these assumptions are right for very small systems (10–100 particles). To answer this question, two systems with exact solutions (the Einstein model of the solid and the two-level system) have been solved with and without these approximations.
publishDate 2013
dc.date.none.fl_str_mv 2013-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5829
Miranda, Enrique Nestor; Bertoldi, Dalía Surena; Thermostatistics of small systems: exact results in the microcanonical formalism; IOP Publishing; European Journal of Physics; 34; 5-2013; 1075-1087
0143-0807
url http://hdl.handle.net/11336/5829
identifier_str_mv Miranda, Enrique Nestor; Bertoldi, Dalía Surena; Thermostatistics of small systems: exact results in the microcanonical formalism; IOP Publishing; European Journal of Physics; 34; 5-2013; 1075-1087
0143-0807
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/0143-0807/34/4/1075/
info:eu-repo/semantics/altIdentifier/arxiv/1509.09300v1
info:eu-repo/semantics/altIdentifier/doi/10.1088/0143-0807/34/4/1075
info:eu-repo/semantics/altIdentifier/url/http://arxiv.org/abs/1509.09300v1
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269300618952704
score 13.13397