Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles
- Autores
- Miranda, Enrique Nestor
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the statistical mechanics of small clusters (N ~ 10 - 100) for two-level systems and harmonic oscillators. Both Boltzmann’s and Gibbs’s definitions of entropy are used. The properties of the studied systems are evaluated numerically but exactly; this means that Stirling’s approximation was not used in the calculation and that the discrete nature of energy was taken into account. Results show that, for the two-level system, using Gibbs entropy prevents temperatures from assuming negative values; however, they reach very high values that are not plausible in physical terms. In the case of harmonic oscillators, there are no significant differences when using either definition of entropy. Both systems show that for N = 100 the exact results evaluated with statistical mechanics coincide with those found in the thermodynamic limit. This suggests that thermodynamics can be applied to systems as small as these.
Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina - Materia
-
Statistical Mechanics
Entropy
Few-Particle Systems
Boltzmann
Gibbs - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69308
Ver los metadatos del registro completo
id |
CONICETDig_3624347e5e1a9d9b071549c995d27889 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69308 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few ParticlesMiranda, Enrique NestorStatistical MechanicsEntropyFew-Particle SystemsBoltzmannGibbshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the statistical mechanics of small clusters (N ~ 10 - 100) for two-level systems and harmonic oscillators. Both Boltzmann’s and Gibbs’s definitions of entropy are used. The properties of the studied systems are evaluated numerically but exactly; this means that Stirling’s approximation was not used in the calculation and that the discrete nature of energy was taken into account. Results show that, for the two-level system, using Gibbs entropy prevents temperatures from assuming negative values; however, they reach very high values that are not plausible in physical terms. In the case of harmonic oscillators, there are no significant differences when using either definition of entropy. Both systems show that for N = 100 the exact results evaluated with statistical mechanics coincide with those found in the thermodynamic limit. This suggests that thermodynamics can be applied to systems as small as these.Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaScientific Research2015-07-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69308Miranda, Enrique Nestor; Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles; Scientific Research; Journal of Modern Physics; 6; 8; 15-7-2015; 1051-10572153-120XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://file.scirp.org/Html/4-7502261_57963.htminfo:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2015.68109info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:31Zoai:ri.conicet.gov.ar:11336/69308instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:31.944CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles |
title |
Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles |
spellingShingle |
Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles Miranda, Enrique Nestor Statistical Mechanics Entropy Few-Particle Systems Boltzmann Gibbs |
title_short |
Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles |
title_full |
Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles |
title_fullStr |
Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles |
title_full_unstemmed |
Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles |
title_sort |
Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles |
dc.creator.none.fl_str_mv |
Miranda, Enrique Nestor |
author |
Miranda, Enrique Nestor |
author_facet |
Miranda, Enrique Nestor |
author_role |
author |
dc.subject.none.fl_str_mv |
Statistical Mechanics Entropy Few-Particle Systems Boltzmann Gibbs |
topic |
Statistical Mechanics Entropy Few-Particle Systems Boltzmann Gibbs |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the statistical mechanics of small clusters (N ~ 10 - 100) for two-level systems and harmonic oscillators. Both Boltzmann’s and Gibbs’s definitions of entropy are used. The properties of the studied systems are evaluated numerically but exactly; this means that Stirling’s approximation was not used in the calculation and that the discrete nature of energy was taken into account. Results show that, for the two-level system, using Gibbs entropy prevents temperatures from assuming negative values; however, they reach very high values that are not plausible in physical terms. In the case of harmonic oscillators, there are no significant differences when using either definition of entropy. Both systems show that for N = 100 the exact results evaluated with statistical mechanics coincide with those found in the thermodynamic limit. This suggests that thermodynamics can be applied to systems as small as these. Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina |
description |
We study the statistical mechanics of small clusters (N ~ 10 - 100) for two-level systems and harmonic oscillators. Both Boltzmann’s and Gibbs’s definitions of entropy are used. The properties of the studied systems are evaluated numerically but exactly; this means that Stirling’s approximation was not used in the calculation and that the discrete nature of energy was taken into account. Results show that, for the two-level system, using Gibbs entropy prevents temperatures from assuming negative values; however, they reach very high values that are not plausible in physical terms. In the case of harmonic oscillators, there are no significant differences when using either definition of entropy. Both systems show that for N = 100 the exact results evaluated with statistical mechanics coincide with those found in the thermodynamic limit. This suggests that thermodynamics can be applied to systems as small as these. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07-15 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69308 Miranda, Enrique Nestor; Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles; Scientific Research; Journal of Modern Physics; 6; 8; 15-7-2015; 1051-1057 2153-120X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69308 |
identifier_str_mv |
Miranda, Enrique Nestor; Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles; Scientific Research; Journal of Modern Physics; 6; 8; 15-7-2015; 1051-1057 2153-120X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://file.scirp.org/Html/4-7502261_57963.htm info:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2015.68109 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Scientific Research |
publisher.none.fl_str_mv |
Scientific Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270084390715392 |
score |
13.13397 |