Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles

Autores
Miranda, Enrique Nestor
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the statistical mechanics of small clusters (N ~ 10 - 100) for two-level systems and harmonic oscillators. Both Boltzmann’s and Gibbs’s definitions of entropy are used. The properties of the studied systems are evaluated numerically but exactly; this means that Stirling’s approximation was not used in the calculation and that the discrete nature of energy was taken into account. Results show that, for the two-level system, using Gibbs entropy prevents temperatures from assuming negative values; however, they reach very high values that are not plausible in physical terms. In the case of harmonic oscillators, there are no significant differences when using either definition of entropy. Both systems show that for N = 100 the exact results evaluated with statistical mechanics coincide with those found in the thermodynamic limit. This suggests that thermodynamics can be applied to systems as small as these.
Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
Materia
Statistical Mechanics
Entropy
Few-Particle Systems
Boltzmann
Gibbs
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/69308

id CONICETDig_3624347e5e1a9d9b071549c995d27889
oai_identifier_str oai:ri.conicet.gov.ar:11336/69308
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few ParticlesMiranda, Enrique NestorStatistical MechanicsEntropyFew-Particle SystemsBoltzmannGibbshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the statistical mechanics of small clusters (N ~ 10 - 100) for two-level systems and harmonic oscillators. Both Boltzmann’s and Gibbs’s definitions of entropy are used. The properties of the studied systems are evaluated numerically but exactly; this means that Stirling’s approximation was not used in the calculation and that the discrete nature of energy was taken into account. Results show that, for the two-level system, using Gibbs entropy prevents temperatures from assuming negative values; however, they reach very high values that are not plausible in physical terms. In the case of harmonic oscillators, there are no significant differences when using either definition of entropy. Both systems show that for N = 100 the exact results evaluated with statistical mechanics coincide with those found in the thermodynamic limit. This suggests that thermodynamics can be applied to systems as small as these.Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaScientific Research2015-07-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69308Miranda, Enrique Nestor; Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles; Scientific Research; Journal of Modern Physics; 6; 8; 15-7-2015; 1051-10572153-120XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://file.scirp.org/Html/4-7502261_57963.htminfo:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2015.68109info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:31Zoai:ri.conicet.gov.ar:11336/69308instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:31.944CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles
title Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles
spellingShingle Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles
Miranda, Enrique Nestor
Statistical Mechanics
Entropy
Few-Particle Systems
Boltzmann
Gibbs
title_short Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles
title_full Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles
title_fullStr Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles
title_full_unstemmed Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles
title_sort Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles
dc.creator.none.fl_str_mv Miranda, Enrique Nestor
author Miranda, Enrique Nestor
author_facet Miranda, Enrique Nestor
author_role author
dc.subject.none.fl_str_mv Statistical Mechanics
Entropy
Few-Particle Systems
Boltzmann
Gibbs
topic Statistical Mechanics
Entropy
Few-Particle Systems
Boltzmann
Gibbs
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the statistical mechanics of small clusters (N ~ 10 - 100) for two-level systems and harmonic oscillators. Both Boltzmann’s and Gibbs’s definitions of entropy are used. The properties of the studied systems are evaluated numerically but exactly; this means that Stirling’s approximation was not used in the calculation and that the discrete nature of energy was taken into account. Results show that, for the two-level system, using Gibbs entropy prevents temperatures from assuming negative values; however, they reach very high values that are not plausible in physical terms. In the case of harmonic oscillators, there are no significant differences when using either definition of entropy. Both systems show that for N = 100 the exact results evaluated with statistical mechanics coincide with those found in the thermodynamic limit. This suggests that thermodynamics can be applied to systems as small as these.
Fil: Miranda, Enrique Nestor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina
description We study the statistical mechanics of small clusters (N ~ 10 - 100) for two-level systems and harmonic oscillators. Both Boltzmann’s and Gibbs’s definitions of entropy are used. The properties of the studied systems are evaluated numerically but exactly; this means that Stirling’s approximation was not used in the calculation and that the discrete nature of energy was taken into account. Results show that, for the two-level system, using Gibbs entropy prevents temperatures from assuming negative values; however, they reach very high values that are not plausible in physical terms. In the case of harmonic oscillators, there are no significant differences when using either definition of entropy. Both systems show that for N = 100 the exact results evaluated with statistical mechanics coincide with those found in the thermodynamic limit. This suggests that thermodynamics can be applied to systems as small as these.
publishDate 2015
dc.date.none.fl_str_mv 2015-07-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/69308
Miranda, Enrique Nestor; Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles; Scientific Research; Journal of Modern Physics; 6; 8; 15-7-2015; 1051-1057
2153-120X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/69308
identifier_str_mv Miranda, Enrique Nestor; Boltzmann or Gibbs Entropy?: Thermostatistics of Two Models with Few Particles; Scientific Research; Journal of Modern Physics; 6; 8; 15-7-2015; 1051-1057
2153-120X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://file.scirp.org/Html/4-7502261_57963.htm
info:eu-repo/semantics/altIdentifier/doi/10.4236/jmp.2015.68109
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Scientific Research
publisher.none.fl_str_mv Scientific Research
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270084390715392
score 13.13397