Analytical solution of the mean field Ising model for finite systems
- Autores
- Bertoldi, Dalía Surena; Bringa, Eduardo Marcial; Miranda, Enrique Nestor
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Ising model for finite systems, e.g. for clusters of different sizes and crystal lattices, was solved analytically by the mean field approach. The magnetization was calculated from the number of accessible microstates, using the gamma function and its derivatives, unlike the usual solution in the microcanonical which uses the Stirling approximation. We determined a scaling exponent of ~1/3, which shows how the Curie temperature decreases with decreasing nanoparticle size. Moreover, the model predicts the behaviour of surface and core regions and it explains in simple terms several effects previously observed in experiments and Monte Carlo simulations of small magnetic systems.
Fil: Bertoldi, Dalía Surena. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miranda, Enrique Nestor. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina - Materia
-
Ising Model
Clusteer Impact
Microcanonical Solution
Monte Carlo - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16945
Ver los metadatos del registro completo
id |
CONICETDig_8b62fdeff1b3345b4619deff0fd49d5f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16945 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Analytical solution of the mean field Ising model for finite systemsBertoldi, Dalía SurenaBringa, Eduardo MarcialMiranda, Enrique NestorIsing ModelClusteer ImpactMicrocanonical SolutionMonte Carlohttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The Ising model for finite systems, e.g. for clusters of different sizes and crystal lattices, was solved analytically by the mean field approach. The magnetization was calculated from the number of accessible microstates, using the gamma function and its derivatives, unlike the usual solution in the microcanonical which uses the Stirling approximation. We determined a scaling exponent of ~1/3, which shows how the Curie temperature decreases with decreasing nanoparticle size. Moreover, the model predicts the behaviour of surface and core regions and it explains in simple terms several effects previously observed in experiments and Monte Carlo simulations of small magnetic systems.Fil: Bertoldi, Dalía Surena. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miranda, Enrique Nestor. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaIop Publishing2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16945Bertoldi, Dalía Surena; Bringa, Eduardo Marcial; Miranda, Enrique Nestor; Analytical solution of the mean field Ising model for finite systems; Iop Publishing; Journal Of Physics: Condensed Matter; 24; 5-2012; 1-6; 2260040953-8984enginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/24/22/226004info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0953-8984/24/22/226004/meta;jsessionid=DEDD350214B74F5306B9837393E9C8B8.ip-10-40-1-105info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:56Zoai:ri.conicet.gov.ar:11336/16945instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:57.49CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Analytical solution of the mean field Ising model for finite systems |
title |
Analytical solution of the mean field Ising model for finite systems |
spellingShingle |
Analytical solution of the mean field Ising model for finite systems Bertoldi, Dalía Surena Ising Model Clusteer Impact Microcanonical Solution Monte Carlo |
title_short |
Analytical solution of the mean field Ising model for finite systems |
title_full |
Analytical solution of the mean field Ising model for finite systems |
title_fullStr |
Analytical solution of the mean field Ising model for finite systems |
title_full_unstemmed |
Analytical solution of the mean field Ising model for finite systems |
title_sort |
Analytical solution of the mean field Ising model for finite systems |
dc.creator.none.fl_str_mv |
Bertoldi, Dalía Surena Bringa, Eduardo Marcial Miranda, Enrique Nestor |
author |
Bertoldi, Dalía Surena |
author_facet |
Bertoldi, Dalía Surena Bringa, Eduardo Marcial Miranda, Enrique Nestor |
author_role |
author |
author2 |
Bringa, Eduardo Marcial Miranda, Enrique Nestor |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ising Model Clusteer Impact Microcanonical Solution Monte Carlo |
topic |
Ising Model Clusteer Impact Microcanonical Solution Monte Carlo |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The Ising model for finite systems, e.g. for clusters of different sizes and crystal lattices, was solved analytically by the mean field approach. The magnetization was calculated from the number of accessible microstates, using the gamma function and its derivatives, unlike the usual solution in the microcanonical which uses the Stirling approximation. We determined a scaling exponent of ~1/3, which shows how the Curie temperature decreases with decreasing nanoparticle size. Moreover, the model predicts the behaviour of surface and core regions and it explains in simple terms several effects previously observed in experiments and Monte Carlo simulations of small magnetic systems. Fil: Bertoldi, Dalía Surena. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Miranda, Enrique Nestor. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; Argentina |
description |
The Ising model for finite systems, e.g. for clusters of different sizes and crystal lattices, was solved analytically by the mean field approach. The magnetization was calculated from the number of accessible microstates, using the gamma function and its derivatives, unlike the usual solution in the microcanonical which uses the Stirling approximation. We determined a scaling exponent of ~1/3, which shows how the Curie temperature decreases with decreasing nanoparticle size. Moreover, the model predicts the behaviour of surface and core regions and it explains in simple terms several effects previously observed in experiments and Monte Carlo simulations of small magnetic systems. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16945 Bertoldi, Dalía Surena; Bringa, Eduardo Marcial; Miranda, Enrique Nestor; Analytical solution of the mean field Ising model for finite systems; Iop Publishing; Journal Of Physics: Condensed Matter; 24; 5-2012; 1-6; 226004 0953-8984 |
url |
http://hdl.handle.net/11336/16945 |
identifier_str_mv |
Bertoldi, Dalía Surena; Bringa, Eduardo Marcial; Miranda, Enrique Nestor; Analytical solution of the mean field Ising model for finite systems; Iop Publishing; Journal Of Physics: Condensed Matter; 24; 5-2012; 1-6; 226004 0953-8984 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/0953-8984/24/22/226004 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0953-8984/24/22/226004/meta;jsessionid=DEDD350214B74F5306B9837393E9C8B8.ip-10-40-1-105 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Iop Publishing |
publisher.none.fl_str_mv |
Iop Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269062616317952 |
score |
13.13397 |