Axiomatizing core extensions on NTU games
- Autores
- Arribillaga, Roberto Pablo
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study solution concepts for NTU games, where the cooperation (or negotiation) of the players can be obtained by means of non-trivial families of coalitions (e.g. balanced families). We give an axiomatization of the aspiration core on the domain of all NTU games as the only solution that satisfies non-emptiness, individual rationality, a generalized version of consistency and independence of individual irrelevant alternatives. If we consider solutions supported by partitions, our axioms characterize the c-core [Guesnerie and Oddou in, Econ Lett 3(4):301–306, 1979; Sun et al. in, J Math Econ 44(7–8):853–860, 2008], and if we consider solutions supported only by the grand coalition, our axioms also characterize the classical core, on appropriate subdomains. The main result of this paper generalizes Peleg’s core axiomatization [J Math Econ 14(2):203–214, 1985] to non-empty solutions that are supported by non-trivial families of coalitions.
Fil: Arribillaga, Roberto Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina - Materia
-
Aspiration Core
Axiomatizations
Consistency
Core - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60455
Ver los metadatos del registro completo
id |
CONICETDig_c17e727284b27f642302c8d52f3c2d00 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60455 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Axiomatizing core extensions on NTU gamesArribillaga, Roberto PabloAspiration CoreAxiomatizationsConsistencyCorehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study solution concepts for NTU games, where the cooperation (or negotiation) of the players can be obtained by means of non-trivial families of coalitions (e.g. balanced families). We give an axiomatization of the aspiration core on the domain of all NTU games as the only solution that satisfies non-emptiness, individual rationality, a generalized version of consistency and independence of individual irrelevant alternatives. If we consider solutions supported by partitions, our axioms characterize the c-core [Guesnerie and Oddou in, Econ Lett 3(4):301–306, 1979; Sun et al. in, J Math Econ 44(7–8):853–860, 2008], and if we consider solutions supported only by the grand coalition, our axioms also characterize the classical core, on appropriate subdomains. The main result of this paper generalizes Peleg’s core axiomatization [J Math Econ 14(2):203–214, 1985] to non-empty solutions that are supported by non-trivial families of coalitions.Fil: Arribillaga, Roberto Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; ArgentinaSpringer Heidelberg2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60455Arribillaga, Roberto Pablo; Axiomatizing core extensions on NTU games; Springer Heidelberg; International Journal Of Game Theory; 45; 3; 8-2016; 585-6000020-72761432-1270CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00182-015-0471-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00182-015-0471-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:03Zoai:ri.conicet.gov.ar:11336/60455instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:03.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Axiomatizing core extensions on NTU games |
title |
Axiomatizing core extensions on NTU games |
spellingShingle |
Axiomatizing core extensions on NTU games Arribillaga, Roberto Pablo Aspiration Core Axiomatizations Consistency Core |
title_short |
Axiomatizing core extensions on NTU games |
title_full |
Axiomatizing core extensions on NTU games |
title_fullStr |
Axiomatizing core extensions on NTU games |
title_full_unstemmed |
Axiomatizing core extensions on NTU games |
title_sort |
Axiomatizing core extensions on NTU games |
dc.creator.none.fl_str_mv |
Arribillaga, Roberto Pablo |
author |
Arribillaga, Roberto Pablo |
author_facet |
Arribillaga, Roberto Pablo |
author_role |
author |
dc.subject.none.fl_str_mv |
Aspiration Core Axiomatizations Consistency Core |
topic |
Aspiration Core Axiomatizations Consistency Core |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study solution concepts for NTU games, where the cooperation (or negotiation) of the players can be obtained by means of non-trivial families of coalitions (e.g. balanced families). We give an axiomatization of the aspiration core on the domain of all NTU games as the only solution that satisfies non-emptiness, individual rationality, a generalized version of consistency and independence of individual irrelevant alternatives. If we consider solutions supported by partitions, our axioms characterize the c-core [Guesnerie and Oddou in, Econ Lett 3(4):301–306, 1979; Sun et al. in, J Math Econ 44(7–8):853–860, 2008], and if we consider solutions supported only by the grand coalition, our axioms also characterize the classical core, on appropriate subdomains. The main result of this paper generalizes Peleg’s core axiomatization [J Math Econ 14(2):203–214, 1985] to non-empty solutions that are supported by non-trivial families of coalitions. Fil: Arribillaga, Roberto Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina |
description |
We study solution concepts for NTU games, where the cooperation (or negotiation) of the players can be obtained by means of non-trivial families of coalitions (e.g. balanced families). We give an axiomatization of the aspiration core on the domain of all NTU games as the only solution that satisfies non-emptiness, individual rationality, a generalized version of consistency and independence of individual irrelevant alternatives. If we consider solutions supported by partitions, our axioms characterize the c-core [Guesnerie and Oddou in, Econ Lett 3(4):301–306, 1979; Sun et al. in, J Math Econ 44(7–8):853–860, 2008], and if we consider solutions supported only by the grand coalition, our axioms also characterize the classical core, on appropriate subdomains. The main result of this paper generalizes Peleg’s core axiomatization [J Math Econ 14(2):203–214, 1985] to non-empty solutions that are supported by non-trivial families of coalitions. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60455 Arribillaga, Roberto Pablo; Axiomatizing core extensions on NTU games; Springer Heidelberg; International Journal Of Game Theory; 45; 3; 8-2016; 585-600 0020-7276 1432-1270 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60455 |
identifier_str_mv |
Arribillaga, Roberto Pablo; Axiomatizing core extensions on NTU games; Springer Heidelberg; International Journal Of Game Theory; 45; 3; 8-2016; 585-600 0020-7276 1432-1270 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00182-015-0471-0 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00182-015-0471-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269197991673856 |
score |
13.13397 |