Axiomatizing core extensions on NTU games

Autores
Arribillaga, Roberto Pablo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study solution concepts for NTU games, where the cooperation (or negotiation) of the players can be obtained by means of non-trivial families of coalitions (e.g. balanced families). We give an axiomatization of the aspiration core on the domain of all NTU games as the only solution that satisfies non-emptiness, individual rationality, a generalized version of consistency and independence of individual irrelevant alternatives. If we consider solutions supported by partitions, our axioms characterize the c-core [Guesnerie and Oddou in, Econ Lett 3(4):301–306, 1979; Sun et al. in, J Math Econ 44(7–8):853–860, 2008], and if we consider solutions supported only by the grand coalition, our axioms also characterize the classical core, on appropriate subdomains. The main result of this paper generalizes Peleg’s core axiomatization [J Math Econ 14(2):203–214, 1985] to non-empty solutions that are supported by non-trivial families of coalitions.
Fil: Arribillaga, Roberto Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina
Materia
Aspiration Core
Axiomatizations
Consistency
Core
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60455

id CONICETDig_c17e727284b27f642302c8d52f3c2d00
oai_identifier_str oai:ri.conicet.gov.ar:11336/60455
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Axiomatizing core extensions on NTU gamesArribillaga, Roberto PabloAspiration CoreAxiomatizationsConsistencyCorehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study solution concepts for NTU games, where the cooperation (or negotiation) of the players can be obtained by means of non-trivial families of coalitions (e.g. balanced families). We give an axiomatization of the aspiration core on the domain of all NTU games as the only solution that satisfies non-emptiness, individual rationality, a generalized version of consistency and independence of individual irrelevant alternatives. If we consider solutions supported by partitions, our axioms characterize the c-core [Guesnerie and Oddou in, Econ Lett 3(4):301–306, 1979; Sun et al. in, J Math Econ 44(7–8):853–860, 2008], and if we consider solutions supported only by the grand coalition, our axioms also characterize the classical core, on appropriate subdomains. The main result of this paper generalizes Peleg’s core axiomatization [J Math Econ 14(2):203–214, 1985] to non-empty solutions that are supported by non-trivial families of coalitions.Fil: Arribillaga, Roberto Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; ArgentinaSpringer Heidelberg2016-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60455Arribillaga, Roberto Pablo; Axiomatizing core extensions on NTU games; Springer Heidelberg; International Journal Of Game Theory; 45; 3; 8-2016; 585-6000020-72761432-1270CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00182-015-0471-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00182-015-0471-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:03Zoai:ri.conicet.gov.ar:11336/60455instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:03.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Axiomatizing core extensions on NTU games
title Axiomatizing core extensions on NTU games
spellingShingle Axiomatizing core extensions on NTU games
Arribillaga, Roberto Pablo
Aspiration Core
Axiomatizations
Consistency
Core
title_short Axiomatizing core extensions on NTU games
title_full Axiomatizing core extensions on NTU games
title_fullStr Axiomatizing core extensions on NTU games
title_full_unstemmed Axiomatizing core extensions on NTU games
title_sort Axiomatizing core extensions on NTU games
dc.creator.none.fl_str_mv Arribillaga, Roberto Pablo
author Arribillaga, Roberto Pablo
author_facet Arribillaga, Roberto Pablo
author_role author
dc.subject.none.fl_str_mv Aspiration Core
Axiomatizations
Consistency
Core
topic Aspiration Core
Axiomatizations
Consistency
Core
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study solution concepts for NTU games, where the cooperation (or negotiation) of the players can be obtained by means of non-trivial families of coalitions (e.g. balanced families). We give an axiomatization of the aspiration core on the domain of all NTU games as the only solution that satisfies non-emptiness, individual rationality, a generalized version of consistency and independence of individual irrelevant alternatives. If we consider solutions supported by partitions, our axioms characterize the c-core [Guesnerie and Oddou in, Econ Lett 3(4):301–306, 1979; Sun et al. in, J Math Econ 44(7–8):853–860, 2008], and if we consider solutions supported only by the grand coalition, our axioms also characterize the classical core, on appropriate subdomains. The main result of this paper generalizes Peleg’s core axiomatization [J Math Econ 14(2):203–214, 1985] to non-empty solutions that are supported by non-trivial families of coalitions.
Fil: Arribillaga, Roberto Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina
description We study solution concepts for NTU games, where the cooperation (or negotiation) of the players can be obtained by means of non-trivial families of coalitions (e.g. balanced families). We give an axiomatization of the aspiration core on the domain of all NTU games as the only solution that satisfies non-emptiness, individual rationality, a generalized version of consistency and independence of individual irrelevant alternatives. If we consider solutions supported by partitions, our axioms characterize the c-core [Guesnerie and Oddou in, Econ Lett 3(4):301–306, 1979; Sun et al. in, J Math Econ 44(7–8):853–860, 2008], and if we consider solutions supported only by the grand coalition, our axioms also characterize the classical core, on appropriate subdomains. The main result of this paper generalizes Peleg’s core axiomatization [J Math Econ 14(2):203–214, 1985] to non-empty solutions that are supported by non-trivial families of coalitions.
publishDate 2016
dc.date.none.fl_str_mv 2016-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60455
Arribillaga, Roberto Pablo; Axiomatizing core extensions on NTU games; Springer Heidelberg; International Journal Of Game Theory; 45; 3; 8-2016; 585-600
0020-7276
1432-1270
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60455
identifier_str_mv Arribillaga, Roberto Pablo; Axiomatizing core extensions on NTU games; Springer Heidelberg; International Journal Of Game Theory; 45; 3; 8-2016; 585-600
0020-7276
1432-1270
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s00182-015-0471-0
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs00182-015-0471-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer Heidelberg
publisher.none.fl_str_mv Springer Heidelberg
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269197991673856
score 13.13397