On the geometric dimension of the core of a TU-game
- Autores
- Cesco, Juan Carlos; Marchi, Ezio
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we state a condition which characterizes the sub-class of TU-games (games with transferable utility) having non-empty core of dimension k; for any 0 <= k <= n. It improves and generalizes the adding up (AU) property used by Brandenburger and Stuart for the case k = 0 (games with one-point core) to study biform games. It also embraces one of the two conditions stated by Zhao for the case k = n - 1 (games having core with non-empty interior, relative to the set of pre-imputations) while studying some geometric properties of the core. The condition allows us to show that all the information about the geometric dimension of the core is contained in the vector of excesses associated to the nucleolus of the game. It also allows us to get some insight about the geometric properties of the cone of balanced games as well. In particular, we prove that all the games in the relative interior of each face of the cone have a core with the same geometric dimension. This fact is illustrated for the case of three-person games. We also present a couple of examples to show how the results of the paper can be used to deal with biform games from a new perspective
Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina
Fil: Marchi, Ezio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina - Materia
-
Tu-Games
Core
Geometric Dimension
Biform Games - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14644
Ver los metadatos del registro completo
id |
CONICETDig_668038dbfa5fc1d0dde9db6a4a94b08f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14644 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the geometric dimension of the core of a TU-gameCesco, Juan CarlosMarchi, EzioTu-GamesCoreGeometric DimensionBiform Gameshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we state a condition which characterizes the sub-class of TU-games (games with transferable utility) having non-empty core of dimension k; for any 0 <= k <= n. It improves and generalizes the adding up (AU) property used by Brandenburger and Stuart for the case k = 0 (games with one-point core) to study biform games. It also embraces one of the two conditions stated by Zhao for the case k = n - 1 (games having core with non-empty interior, relative to the set of pre-imputations) while studying some geometric properties of the core. The condition allows us to show that all the information about the geometric dimension of the core is contained in the vector of excesses associated to the nucleolus of the game. It also allows us to get some insight about the geometric properties of the cone of balanced games as well. In particular, we prove that all the games in the relative interior of each face of the cone have a core with the same geometric dimension. This fact is illustrated for the case of three-person games. We also present a couple of examples to show how the results of the paper can be used to deal with biform games from a new perspectiveFil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; ArgentinaFil: Marchi, Ezio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; ArgentinaAmerican Scientific Publishers2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14644Cesco, Juan Carlos; Marchi, Ezio; On the geometric dimension of the core of a TU-game; American Scientific Publishers; Journal of Advanced Mathematics and Applications; 3; 1; 6-2014; 55-592156-75652156-7557enginfo:eu-repo/semantics/altIdentifier/url/http://www.ingentaconnect.com/content/asp/jama/2014/00000003/00000001/art00008info:eu-repo/semantics/altIdentifier/doi/10.1166/jama.2014.1051info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:18Zoai:ri.conicet.gov.ar:11336/14644instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:18.634CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the geometric dimension of the core of a TU-game |
title |
On the geometric dimension of the core of a TU-game |
spellingShingle |
On the geometric dimension of the core of a TU-game Cesco, Juan Carlos Tu-Games Core Geometric Dimension Biform Games |
title_short |
On the geometric dimension of the core of a TU-game |
title_full |
On the geometric dimension of the core of a TU-game |
title_fullStr |
On the geometric dimension of the core of a TU-game |
title_full_unstemmed |
On the geometric dimension of the core of a TU-game |
title_sort |
On the geometric dimension of the core of a TU-game |
dc.creator.none.fl_str_mv |
Cesco, Juan Carlos Marchi, Ezio |
author |
Cesco, Juan Carlos |
author_facet |
Cesco, Juan Carlos Marchi, Ezio |
author_role |
author |
author2 |
Marchi, Ezio |
author2_role |
author |
dc.subject.none.fl_str_mv |
Tu-Games Core Geometric Dimension Biform Games |
topic |
Tu-Games Core Geometric Dimension Biform Games |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we state a condition which characterizes the sub-class of TU-games (games with transferable utility) having non-empty core of dimension k; for any 0 <= k <= n. It improves and generalizes the adding up (AU) property used by Brandenburger and Stuart for the case k = 0 (games with one-point core) to study biform games. It also embraces one of the two conditions stated by Zhao for the case k = n - 1 (games having core with non-empty interior, relative to the set of pre-imputations) while studying some geometric properties of the core. The condition allows us to show that all the information about the geometric dimension of the core is contained in the vector of excesses associated to the nucleolus of the game. It also allows us to get some insight about the geometric properties of the cone of balanced games as well. In particular, we prove that all the games in the relative interior of each face of the cone have a core with the same geometric dimension. This fact is illustrated for the case of three-person games. We also present a couple of examples to show how the results of the paper can be used to deal with biform games from a new perspective Fil: Cesco, Juan Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina Fil: Marchi, Ezio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Matemática Aplicada de San Luis; Argentina |
description |
In this paper we state a condition which characterizes the sub-class of TU-games (games with transferable utility) having non-empty core of dimension k; for any 0 <= k <= n. It improves and generalizes the adding up (AU) property used by Brandenburger and Stuart for the case k = 0 (games with one-point core) to study biform games. It also embraces one of the two conditions stated by Zhao for the case k = n - 1 (games having core with non-empty interior, relative to the set of pre-imputations) while studying some geometric properties of the core. The condition allows us to show that all the information about the geometric dimension of the core is contained in the vector of excesses associated to the nucleolus of the game. It also allows us to get some insight about the geometric properties of the cone of balanced games as well. In particular, we prove that all the games in the relative interior of each face of the cone have a core with the same geometric dimension. This fact is illustrated for the case of three-person games. We also present a couple of examples to show how the results of the paper can be used to deal with biform games from a new perspective |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14644 Cesco, Juan Carlos; Marchi, Ezio; On the geometric dimension of the core of a TU-game; American Scientific Publishers; Journal of Advanced Mathematics and Applications; 3; 1; 6-2014; 55-59 2156-7565 2156-7557 |
url |
http://hdl.handle.net/11336/14644 |
identifier_str_mv |
Cesco, Juan Carlos; Marchi, Ezio; On the geometric dimension of the core of a TU-game; American Scientific Publishers; Journal of Advanced Mathematics and Applications; 3; 1; 6-2014; 55-59 2156-7565 2156-7557 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ingentaconnect.com/content/asp/jama/2014/00000003/00000001/art00008 info:eu-repo/semantics/altIdentifier/doi/10.1166/jama.2014.1051 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Scientific Publishers |
publisher.none.fl_str_mv |
American Scientific Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268849608589312 |
score |
13.13397 |