Convergence of the approximate cores to the aspiration core in partitioning games
- Autores
- Arribillaga, Roberto Pablo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The approximate core and the aspiration core are two non-empty solutions for cooperative games that have emerged in order to give an answer to cooperative games with an empty core. Although the approximate core and the aspiration core come from two different ideas, we show that both solutions are related in a very interesting way in partitioning games (or superadditive games). In fact, we prove that the approximate core converges to the aspiration core in partitioning games (or superadditive games).
Fil: Arribillaga, Roberto Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina - Materia
-
Approximate Core
Aspiration Core
Convergence
Core
Partitioning Games - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60477
Ver los metadatos del registro completo
id |
CONICETDig_56d4e6eed9da24e3fb6970b60d113516 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60477 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Convergence of the approximate cores to the aspiration core in partitioning gamesArribillaga, Roberto PabloApproximate CoreAspiration CoreConvergenceCorePartitioning Gameshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The approximate core and the aspiration core are two non-empty solutions for cooperative games that have emerged in order to give an answer to cooperative games with an empty core. Although the approximate core and the aspiration core come from two different ideas, we show that both solutions are related in a very interesting way in partitioning games (or superadditive games). In fact, we prove that the approximate core converges to the aspiration core in partitioning games (or superadditive games).Fil: Arribillaga, Roberto Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; ArgentinaSpringer2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60477Arribillaga, Roberto Pablo; Convergence of the approximate cores to the aspiration core in partitioning games; Springer; Top; 23; 2; 7-2015; 521-5341134-57641863-8279CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11750-014-0351-yinfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11750-014-0351-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:43:42Zoai:ri.conicet.gov.ar:11336/60477instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:43:43.112CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Convergence of the approximate cores to the aspiration core in partitioning games |
title |
Convergence of the approximate cores to the aspiration core in partitioning games |
spellingShingle |
Convergence of the approximate cores to the aspiration core in partitioning games Arribillaga, Roberto Pablo Approximate Core Aspiration Core Convergence Core Partitioning Games |
title_short |
Convergence of the approximate cores to the aspiration core in partitioning games |
title_full |
Convergence of the approximate cores to the aspiration core in partitioning games |
title_fullStr |
Convergence of the approximate cores to the aspiration core in partitioning games |
title_full_unstemmed |
Convergence of the approximate cores to the aspiration core in partitioning games |
title_sort |
Convergence of the approximate cores to the aspiration core in partitioning games |
dc.creator.none.fl_str_mv |
Arribillaga, Roberto Pablo |
author |
Arribillaga, Roberto Pablo |
author_facet |
Arribillaga, Roberto Pablo |
author_role |
author |
dc.subject.none.fl_str_mv |
Approximate Core Aspiration Core Convergence Core Partitioning Games |
topic |
Approximate Core Aspiration Core Convergence Core Partitioning Games |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The approximate core and the aspiration core are two non-empty solutions for cooperative games that have emerged in order to give an answer to cooperative games with an empty core. Although the approximate core and the aspiration core come from two different ideas, we show that both solutions are related in a very interesting way in partitioning games (or superadditive games). In fact, we prove that the approximate core converges to the aspiration core in partitioning games (or superadditive games). Fil: Arribillaga, Roberto Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis ; Argentina |
description |
The approximate core and the aspiration core are two non-empty solutions for cooperative games that have emerged in order to give an answer to cooperative games with an empty core. Although the approximate core and the aspiration core come from two different ideas, we show that both solutions are related in a very interesting way in partitioning games (or superadditive games). In fact, we prove that the approximate core converges to the aspiration core in partitioning games (or superadditive games). |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60477 Arribillaga, Roberto Pablo; Convergence of the approximate cores to the aspiration core in partitioning games; Springer; Top; 23; 2; 7-2015; 521-534 1134-5764 1863-8279 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60477 |
identifier_str_mv |
Arribillaga, Roberto Pablo; Convergence of the approximate cores to the aspiration core in partitioning games; Springer; Top; 23; 2; 7-2015; 521-534 1134-5764 1863-8279 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11750-014-0351-y info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11750-014-0351-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614472903163904 |
score |
13.070432 |