Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors
- Autores
- Corradi, Jeremias; Bouzat, Cecilia Beatriz
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses we took advantage of the high-conductance form of the mouse 5-HT3A receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully-occupied receptor overcomes transitions to closed pre-open states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically-defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds.
Fil: Corradi, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET Bahía Blanca. Instituto de Investigaciones Bioquímicas Bahía Blanca (i); Argentina. Universidad Nacional del Sur; Argentina
Fil: Bouzat, Cecilia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET Bahía Blanca. Instituto de Investigaciones Bioquímicas Bahía Blanca (i); Argentina. Universidad Nacional del Sur; Argentina - Materia
-
5-HT3
LIGAN-GATED ION CHANNEL
SERTONIN
PATCH-CLAMP
SINGLE CHANNEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4507
Ver los metadatos del registro completo
id |
CONICETDig_c15ce655b9f5c85fd5bbc9d7dd1a4225 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4507 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptorsCorradi, JeremiasBouzat, Cecilia Beatriz5-HT3LIGAN-GATED ION CHANNELSERTONINPATCH-CLAMPSINGLE CHANNELhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses we took advantage of the high-conductance form of the mouse 5-HT3A receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully-occupied receptor overcomes transitions to closed pre-open states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically-defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds.Fil: Corradi, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET Bahía Blanca. Instituto de Investigaciones Bioquímicas Bahía Blanca (i); Argentina. Universidad Nacional del Sur; ArgentinaFil: Bouzat, Cecilia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET Bahía Blanca. Instituto de Investigaciones Bioquímicas Bahía Blanca (i); Argentina. Universidad Nacional del Sur; ArgentinaSociety For Neuroscience2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4507Corradi, Jeremias; Bouzat, Cecilia Beatriz; Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors; Society For Neuroscience; Journal Of Neuroscience; 34; 50; 12-2014; 16865-168760270-6474enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pubmed/25505338info:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.1970-14.2014info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/34/50/16865.longinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:10:06Zoai:ri.conicet.gov.ar:11336/4507instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:10:07.013CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors |
title |
Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors |
spellingShingle |
Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors Corradi, Jeremias 5-HT3 LIGAN-GATED ION CHANNEL SERTONIN PATCH-CLAMP SINGLE CHANNEL |
title_short |
Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors |
title_full |
Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors |
title_fullStr |
Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors |
title_full_unstemmed |
Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors |
title_sort |
Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors |
dc.creator.none.fl_str_mv |
Corradi, Jeremias Bouzat, Cecilia Beatriz |
author |
Corradi, Jeremias |
author_facet |
Corradi, Jeremias Bouzat, Cecilia Beatriz |
author_role |
author |
author2 |
Bouzat, Cecilia Beatriz |
author2_role |
author |
dc.subject.none.fl_str_mv |
5-HT3 LIGAN-GATED ION CHANNEL SERTONIN PATCH-CLAMP SINGLE CHANNEL |
topic |
5-HT3 LIGAN-GATED ION CHANNEL SERTONIN PATCH-CLAMP SINGLE CHANNEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses we took advantage of the high-conductance form of the mouse 5-HT3A receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully-occupied receptor overcomes transitions to closed pre-open states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically-defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds. Fil: Corradi, Jeremias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET Bahía Blanca. Instituto de Investigaciones Bioquímicas Bahía Blanca (i); Argentina. Universidad Nacional del Sur; Argentina Fil: Bouzat, Cecilia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico CONICET Bahía Blanca. Instituto de Investigaciones Bioquímicas Bahía Blanca (i); Argentina. Universidad Nacional del Sur; Argentina |
description |
Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses we took advantage of the high-conductance form of the mouse 5-HT3A receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully-occupied receptor overcomes transitions to closed pre-open states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically-defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4507 Corradi, Jeremias; Bouzat, Cecilia Beatriz; Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors; Society For Neuroscience; Journal Of Neuroscience; 34; 50; 12-2014; 16865-16876 0270-6474 |
url |
http://hdl.handle.net/11336/4507 |
identifier_str_mv |
Corradi, Jeremias; Bouzat, Cecilia Beatriz; Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors; Society For Neuroscience; Journal Of Neuroscience; 34; 50; 12-2014; 16865-16876 0270-6474 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://www.ncbi.nlm.nih.gov/pubmed/25505338 info:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.1970-14.2014 info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/34/50/16865.long |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Society For Neuroscience |
publisher.none.fl_str_mv |
Society For Neuroscience |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613987005628416 |
score |
13.070432 |