A note on étale representations from nilpotent orbits
- Autores
- Dietrich, Heiko; Globke, Wolfgang; Origlia, Marcos Miguel
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A linear étale representation of a complex algebraic group G is given by a complex algebraic G-module V such that G has a Zariski-open orbit in V and. A current line of research investigates which reductive algebraic groups admit such étale representations, with a focus on understanding common features of étale representations. One source of new examples arises from the classification theory of nilpotent orbits in semisimple Lie algebras. We survey what is known about reductive algebraic groups with étale representations and then discuss two classical constructions for nilpotent orbit classifications due to Vinberg and to Bala and Carter. We determine which reductive groups and étale representations arise in these constructions and we work out in detail the relation between these two constructions.
Fil: Dietrich, Heiko. Monash University; Australia
Fil: Globke, Wolfgang. Universidad de Viena; Austria
Fil: Origlia, Marcos Miguel. Monash University; Australia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
MATHEMATICS
20G05 17B10 22E46 - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/203134
Ver los metadatos del registro completo
id |
CONICETDig_c120ebe418021b660e338abf308dc14b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/203134 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A note on étale representations from nilpotent orbitsDietrich, HeikoGlobke, WolfgangOriglia, Marcos MiguelMATHEMATICS20G05 17B10 22E46https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A linear étale representation of a complex algebraic group G is given by a complex algebraic G-module V such that G has a Zariski-open orbit in V and. A current line of research investigates which reductive algebraic groups admit such étale representations, with a focus on understanding common features of étale representations. One source of new examples arises from the classification theory of nilpotent orbits in semisimple Lie algebras. We survey what is known about reductive algebraic groups with étale representations and then discuss two classical constructions for nilpotent orbit classifications due to Vinberg and to Bala and Carter. We determine which reductive groups and étale representations arise in these constructions and we work out in detail the relation between these two constructions.Fil: Dietrich, Heiko. Monash University; AustraliaFil: Globke, Wolfgang. Universidad de Viena; AustriaFil: Origlia, Marcos Miguel. Monash University; Australia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaAustralian Mathematics Publ Assoc Inc2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/203134Dietrich, Heiko; Globke, Wolfgang; Origlia, Marcos Miguel; A note on étale representations from nilpotent orbits; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 106; 1; 8-2022; 113-1250004-9727CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1017/S0004972721001283info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/note-on-etale-representations-from-nilpotent-orbits/6F4AE084D3DC709D123480E3AAF1FAA2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:18:01Zoai:ri.conicet.gov.ar:11336/203134instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:18:01.507CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A note on étale representations from nilpotent orbits |
title |
A note on étale representations from nilpotent orbits |
spellingShingle |
A note on étale representations from nilpotent orbits Dietrich, Heiko MATHEMATICS 20G05 17B10 22E46 |
title_short |
A note on étale representations from nilpotent orbits |
title_full |
A note on étale representations from nilpotent orbits |
title_fullStr |
A note on étale representations from nilpotent orbits |
title_full_unstemmed |
A note on étale representations from nilpotent orbits |
title_sort |
A note on étale representations from nilpotent orbits |
dc.creator.none.fl_str_mv |
Dietrich, Heiko Globke, Wolfgang Origlia, Marcos Miguel |
author |
Dietrich, Heiko |
author_facet |
Dietrich, Heiko Globke, Wolfgang Origlia, Marcos Miguel |
author_role |
author |
author2 |
Globke, Wolfgang Origlia, Marcos Miguel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MATHEMATICS 20G05 17B10 22E46 |
topic |
MATHEMATICS 20G05 17B10 22E46 |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A linear étale representation of a complex algebraic group G is given by a complex algebraic G-module V such that G has a Zariski-open orbit in V and. A current line of research investigates which reductive algebraic groups admit such étale representations, with a focus on understanding common features of étale representations. One source of new examples arises from the classification theory of nilpotent orbits in semisimple Lie algebras. We survey what is known about reductive algebraic groups with étale representations and then discuss two classical constructions for nilpotent orbit classifications due to Vinberg and to Bala and Carter. We determine which reductive groups and étale representations arise in these constructions and we work out in detail the relation between these two constructions. Fil: Dietrich, Heiko. Monash University; Australia Fil: Globke, Wolfgang. Universidad de Viena; Austria Fil: Origlia, Marcos Miguel. Monash University; Australia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
A linear étale representation of a complex algebraic group G is given by a complex algebraic G-module V such that G has a Zariski-open orbit in V and. A current line of research investigates which reductive algebraic groups admit such étale representations, with a focus on understanding common features of étale representations. One source of new examples arises from the classification theory of nilpotent orbits in semisimple Lie algebras. We survey what is known about reductive algebraic groups with étale representations and then discuss two classical constructions for nilpotent orbit classifications due to Vinberg and to Bala and Carter. We determine which reductive groups and étale representations arise in these constructions and we work out in detail the relation between these two constructions. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/203134 Dietrich, Heiko; Globke, Wolfgang; Origlia, Marcos Miguel; A note on étale representations from nilpotent orbits; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 106; 1; 8-2022; 113-125 0004-9727 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/203134 |
identifier_str_mv |
Dietrich, Heiko; Globke, Wolfgang; Origlia, Marcos Miguel; A note on étale representations from nilpotent orbits; Australian Mathematics Publ Assoc Inc; Bulletin Of The Australian Mathematical Society; 106; 1; 8-2022; 113-125 0004-9727 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1017/S0004972721001283 info:eu-repo/semantics/altIdentifier/url/https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/note-on-etale-representations-from-nilpotent-orbits/6F4AE084D3DC709D123480E3AAF1FAA2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Australian Mathematics Publ Assoc Inc |
publisher.none.fl_str_mv |
Australian Mathematics Publ Assoc Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614138071875584 |
score |
13.070432 |