On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations
- Autores
- Castillo, Maria Emilia; Morin, Pedro
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We perform a mathematical analysis of a model for drug dissolution-diffusion in non erodible nor swellable devices. We deduce a model and obtain a coupled nonlinear system which contains a parabolic equation for the dissolved drug and an ordinary differential equation for the solid drug, which is assumed to be distributed in the whole domain into microspheres which can differ in size. We analyze existence, uniqueness, and regularity properties of the system. Existence is proved using Schauder fixed point theorem. Lack of uniqueness is shown when the initial concentration of dissolved drug is higher than the saturation density in a region, and uniqueness is obtained in the non-saturated case. A square root function appears in the equation for the solid drug, and is responsible for the lack of uniqueness in the oversaturated case. The regularity results are sufficient for the optimal a priori error estimates of a finite element discretization of the system, which is presented and analyzed here. Simulations illustrating some features of the solutions and a good agreement with laboratory experiments are presented. Finally, we obtain error estimates for the finite element method used to compute the simulations.
Fil: Castillo, Maria Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
Dissolution-Diffusion
Partial Differential Equations
Finite Elements
Drug Release - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/30628
Ver los metadatos del registro completo
id |
CONICETDig_c0544f07873543e852021c879d9d0e99 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/30628 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On a dissolution-diffusion model. Existence, uniqueness, regularity and simulationsCastillo, Maria EmiliaMorin, PedroDissolution-DiffusionPartial Differential EquationsFinite ElementsDrug Releasehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We perform a mathematical analysis of a model for drug dissolution-diffusion in non erodible nor swellable devices. We deduce a model and obtain a coupled nonlinear system which contains a parabolic equation for the dissolved drug and an ordinary differential equation for the solid drug, which is assumed to be distributed in the whole domain into microspheres which can differ in size. We analyze existence, uniqueness, and regularity properties of the system. Existence is proved using Schauder fixed point theorem. Lack of uniqueness is shown when the initial concentration of dissolved drug is higher than the saturation density in a region, and uniqueness is obtained in the non-saturated case. A square root function appears in the equation for the solid drug, and is responsible for the lack of uniqueness in the oversaturated case. The regularity results are sufficient for the optimal a priori error estimates of a finite element discretization of the system, which is presented and analyzed here. Simulations illustrating some features of the solutions and a good agreement with laboratory experiments are presented. Finally, we obtain error estimates for the finite element method used to compute the simulations.Fil: Castillo, Maria Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaElsevier2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30628Castillo, Maria Emilia; Morin, Pedro; On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations; Elsevier; Computers And Mathematics With Applications; 70; 8; 10-2015; 1887-19050097-4943CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2015.08.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:32Zoai:ri.conicet.gov.ar:11336/30628instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:33.036CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations |
title |
On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations |
spellingShingle |
On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations Castillo, Maria Emilia Dissolution-Diffusion Partial Differential Equations Finite Elements Drug Release |
title_short |
On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations |
title_full |
On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations |
title_fullStr |
On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations |
title_full_unstemmed |
On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations |
title_sort |
On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations |
dc.creator.none.fl_str_mv |
Castillo, Maria Emilia Morin, Pedro |
author |
Castillo, Maria Emilia |
author_facet |
Castillo, Maria Emilia Morin, Pedro |
author_role |
author |
author2 |
Morin, Pedro |
author2_role |
author |
dc.subject.none.fl_str_mv |
Dissolution-Diffusion Partial Differential Equations Finite Elements Drug Release |
topic |
Dissolution-Diffusion Partial Differential Equations Finite Elements Drug Release |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We perform a mathematical analysis of a model for drug dissolution-diffusion in non erodible nor swellable devices. We deduce a model and obtain a coupled nonlinear system which contains a parabolic equation for the dissolved drug and an ordinary differential equation for the solid drug, which is assumed to be distributed in the whole domain into microspheres which can differ in size. We analyze existence, uniqueness, and regularity properties of the system. Existence is proved using Schauder fixed point theorem. Lack of uniqueness is shown when the initial concentration of dissolved drug is higher than the saturation density in a region, and uniqueness is obtained in the non-saturated case. A square root function appears in the equation for the solid drug, and is responsible for the lack of uniqueness in the oversaturated case. The regularity results are sufficient for the optimal a priori error estimates of a finite element discretization of the system, which is presented and analyzed here. Simulations illustrating some features of the solutions and a good agreement with laboratory experiments are presented. Finally, we obtain error estimates for the finite element method used to compute the simulations. Fil: Castillo, Maria Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
description |
We perform a mathematical analysis of a model for drug dissolution-diffusion in non erodible nor swellable devices. We deduce a model and obtain a coupled nonlinear system which contains a parabolic equation for the dissolved drug and an ordinary differential equation for the solid drug, which is assumed to be distributed in the whole domain into microspheres which can differ in size. We analyze existence, uniqueness, and regularity properties of the system. Existence is proved using Schauder fixed point theorem. Lack of uniqueness is shown when the initial concentration of dissolved drug is higher than the saturation density in a region, and uniqueness is obtained in the non-saturated case. A square root function appears in the equation for the solid drug, and is responsible for the lack of uniqueness in the oversaturated case. The regularity results are sufficient for the optimal a priori error estimates of a finite element discretization of the system, which is presented and analyzed here. Simulations illustrating some features of the solutions and a good agreement with laboratory experiments are presented. Finally, we obtain error estimates for the finite element method used to compute the simulations. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/30628 Castillo, Maria Emilia; Morin, Pedro; On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations; Elsevier; Computers And Mathematics With Applications; 70; 8; 10-2015; 1887-1905 0097-4943 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/30628 |
identifier_str_mv |
Castillo, Maria Emilia; Morin, Pedro; On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations; Elsevier; Computers And Mathematics With Applications; 70; 8; 10-2015; 1887-1905 0097-4943 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2015.08.004 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613108094468096 |
score |
13.070432 |