On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations

Autores
Castillo, Maria Emilia; Morin, Pedro
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We perform a mathematical analysis of a model for drug dissolution-diffusion in non erodible nor swellable devices. We deduce a model and obtain a coupled nonlinear system which contains a parabolic equation for the dissolved drug and an ordinary differential equation for the solid drug, which is assumed to be distributed in the whole domain into microspheres which can differ in size. We analyze existence, uniqueness, and regularity properties of the system. Existence is proved using Schauder fixed point theorem. Lack of uniqueness is shown when the initial concentration of dissolved drug is higher than the saturation density in a region, and uniqueness is obtained in the non-saturated case. A square root function appears in the equation for the solid drug, and is responsible for the lack of uniqueness in the oversaturated case. The regularity results are sufficient for the optimal a priori error estimates of a finite element discretization of the system, which is presented and analyzed here. Simulations illustrating some features of the solutions and a good agreement with laboratory experiments are presented. Finally, we obtain error estimates for the finite element method used to compute the simulations.
Fil: Castillo, Maria Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Materia
Dissolution-Diffusion
Partial Differential Equations
Finite Elements
Drug Release
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/30628

id CONICETDig_c0544f07873543e852021c879d9d0e99
oai_identifier_str oai:ri.conicet.gov.ar:11336/30628
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On a dissolution-diffusion model. Existence, uniqueness, regularity and simulationsCastillo, Maria EmiliaMorin, PedroDissolution-DiffusionPartial Differential EquationsFinite ElementsDrug Releasehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We perform a mathematical analysis of a model for drug dissolution-diffusion in non erodible nor swellable devices. We deduce a model and obtain a coupled nonlinear system which contains a parabolic equation for the dissolved drug and an ordinary differential equation for the solid drug, which is assumed to be distributed in the whole domain into microspheres which can differ in size. We analyze existence, uniqueness, and regularity properties of the system. Existence is proved using Schauder fixed point theorem. Lack of uniqueness is shown when the initial concentration of dissolved drug is higher than the saturation density in a region, and uniqueness is obtained in the non-saturated case. A square root function appears in the equation for the solid drug, and is responsible for the lack of uniqueness in the oversaturated case. The regularity results are sufficient for the optimal a priori error estimates of a finite element discretization of the system, which is presented and analyzed here. Simulations illustrating some features of the solutions and a good agreement with laboratory experiments are presented. Finally, we obtain error estimates for the finite element method used to compute the simulations.Fil: Castillo, Maria Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaElsevier2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30628Castillo, Maria Emilia; Morin, Pedro; On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations; Elsevier; Computers And Mathematics With Applications; 70; 8; 10-2015; 1887-19050097-4943CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2015.08.004info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:32Zoai:ri.conicet.gov.ar:11336/30628instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:33.036CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations
title On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations
spellingShingle On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations
Castillo, Maria Emilia
Dissolution-Diffusion
Partial Differential Equations
Finite Elements
Drug Release
title_short On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations
title_full On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations
title_fullStr On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations
title_full_unstemmed On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations
title_sort On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations
dc.creator.none.fl_str_mv Castillo, Maria Emilia
Morin, Pedro
author Castillo, Maria Emilia
author_facet Castillo, Maria Emilia
Morin, Pedro
author_role author
author2 Morin, Pedro
author2_role author
dc.subject.none.fl_str_mv Dissolution-Diffusion
Partial Differential Equations
Finite Elements
Drug Release
topic Dissolution-Diffusion
Partial Differential Equations
Finite Elements
Drug Release
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We perform a mathematical analysis of a model for drug dissolution-diffusion in non erodible nor swellable devices. We deduce a model and obtain a coupled nonlinear system which contains a parabolic equation for the dissolved drug and an ordinary differential equation for the solid drug, which is assumed to be distributed in the whole domain into microspheres which can differ in size. We analyze existence, uniqueness, and regularity properties of the system. Existence is proved using Schauder fixed point theorem. Lack of uniqueness is shown when the initial concentration of dissolved drug is higher than the saturation density in a region, and uniqueness is obtained in the non-saturated case. A square root function appears in the equation for the solid drug, and is responsible for the lack of uniqueness in the oversaturated case. The regularity results are sufficient for the optimal a priori error estimates of a finite element discretization of the system, which is presented and analyzed here. Simulations illustrating some features of the solutions and a good agreement with laboratory experiments are presented. Finally, we obtain error estimates for the finite element method used to compute the simulations.
Fil: Castillo, Maria Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
description We perform a mathematical analysis of a model for drug dissolution-diffusion in non erodible nor swellable devices. We deduce a model and obtain a coupled nonlinear system which contains a parabolic equation for the dissolved drug and an ordinary differential equation for the solid drug, which is assumed to be distributed in the whole domain into microspheres which can differ in size. We analyze existence, uniqueness, and regularity properties of the system. Existence is proved using Schauder fixed point theorem. Lack of uniqueness is shown when the initial concentration of dissolved drug is higher than the saturation density in a region, and uniqueness is obtained in the non-saturated case. A square root function appears in the equation for the solid drug, and is responsible for the lack of uniqueness in the oversaturated case. The regularity results are sufficient for the optimal a priori error estimates of a finite element discretization of the system, which is presented and analyzed here. Simulations illustrating some features of the solutions and a good agreement with laboratory experiments are presented. Finally, we obtain error estimates for the finite element method used to compute the simulations.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/30628
Castillo, Maria Emilia; Morin, Pedro; On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations; Elsevier; Computers And Mathematics With Applications; 70; 8; 10-2015; 1887-1905
0097-4943
CONICET Digital
CONICET
url http://hdl.handle.net/11336/30628
identifier_str_mv Castillo, Maria Emilia; Morin, Pedro; On a dissolution-diffusion model. Existence, uniqueness, regularity and simulations; Elsevier; Computers And Mathematics With Applications; 70; 8; 10-2015; 1887-1905
0097-4943
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.camwa.2015.08.004
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613108094468096
score 13.070432