Overcoming thermo-optical dynamics in broadband nanophotonic sensing

Autores
Wang, Mingkang; Perez, Diego Javier; Aksyuk, Vladimir
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Advances in integrated photonics open up exciting opportunities for batch-fabricated optical sensors using high-quality-factor nanophotonic cavities to achieve ultrahigh sensitivities and bandwidths. The sensitivity improves with increasing optical power; however, localized absorption and heating within a micrometer-scale mode volume prominently distorts the cavity resonances and strongly couples the sensor response to thermal dynamics, limiting the sensitivity and hindering the measurement of broadband time-dependent signals. Here, we derive a frequency-dependent photonic sensor transfer function that accounts for thermo-optical dynamics and quantitatively describes the measured broadband optomechanical signal from an integrated photonic atomic force microscopy nanomechanical probe. Using this transfer function, the probe can be operated in the high optical power, strongly thermo-optically nonlinear regime, accurately measuring low- and intermediate-frequency components of a dynamic signal while reaching a sensitivity of 0.7 fm/Hz1/2 at high frequencies, an improvement of ≈10× relative to the best performance in the linear regime. Counterintuitively, we discover that a higher transduction gain and sensitivity are achieved with lower quality-factor optical modes for low signal frequencies. Not limited to optomechanical transducers, the derived transfer function is generally valid for describing the small-signal dynamic responses of a broad range of technologically important photonic sensors subject to the thermo-optical effect.
Fil: Wang, Mingkang. National Institute Of Standards And Technology; Estados Unidos. University of Maryland; Estados Unidos
Fil: Perez, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. National Institute Of Standards And Technology; Estados Unidos. University of Maryland; Estados Unidos
Fil: Aksyuk, Vladimir. National Institute Of Standards And Technology; Estados Unidos
Materia
Photonics sensor
MEMS
Transfer function
Thermo-optical effect
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/181700

id CONICETDig_c038c440eb26b65da5b9d7a919cd0a2f
oai_identifier_str oai:ri.conicet.gov.ar:11336/181700
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Overcoming thermo-optical dynamics in broadband nanophotonic sensingWang, MingkangPerez, Diego JavierAksyuk, VladimirPhotonics sensorMEMSTransfer functionThermo-optical effecthttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Advances in integrated photonics open up exciting opportunities for batch-fabricated optical sensors using high-quality-factor nanophotonic cavities to achieve ultrahigh sensitivities and bandwidths. The sensitivity improves with increasing optical power; however, localized absorption and heating within a micrometer-scale mode volume prominently distorts the cavity resonances and strongly couples the sensor response to thermal dynamics, limiting the sensitivity and hindering the measurement of broadband time-dependent signals. Here, we derive a frequency-dependent photonic sensor transfer function that accounts for thermo-optical dynamics and quantitatively describes the measured broadband optomechanical signal from an integrated photonic atomic force microscopy nanomechanical probe. Using this transfer function, the probe can be operated in the high optical power, strongly thermo-optically nonlinear regime, accurately measuring low- and intermediate-frequency components of a dynamic signal while reaching a sensitivity of 0.7 fm/Hz1/2 at high frequencies, an improvement of ≈10× relative to the best performance in the linear regime. Counterintuitively, we discover that a higher transduction gain and sensitivity are achieved with lower quality-factor optical modes for low signal frequencies. Not limited to optomechanical transducers, the derived transfer function is generally valid for describing the small-signal dynamic responses of a broad range of technologically important photonic sensors subject to the thermo-optical effect.Fil: Wang, Mingkang. National Institute Of Standards And Technology; Estados Unidos. University of Maryland; Estados UnidosFil: Perez, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. National Institute Of Standards And Technology; Estados Unidos. University of Maryland; Estados UnidosFil: Aksyuk, Vladimir. National Institute Of Standards And Technology; Estados UnidosNature Publishing Group2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/181700Wang, Mingkang; Perez, Diego Javier; Aksyuk, Vladimir; Overcoming thermo-optical dynamics in broadband nanophotonic sensing; Nature Publishing Group; Microsystems and Nanoengineering; 7; 1; 12-2021; 1-112055-7434CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41378-021-00281-yinfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41378-021-00281-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:37Zoai:ri.conicet.gov.ar:11336/181700instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:37.95CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Overcoming thermo-optical dynamics in broadband nanophotonic sensing
title Overcoming thermo-optical dynamics in broadband nanophotonic sensing
spellingShingle Overcoming thermo-optical dynamics in broadband nanophotonic sensing
Wang, Mingkang
Photonics sensor
MEMS
Transfer function
Thermo-optical effect
title_short Overcoming thermo-optical dynamics in broadband nanophotonic sensing
title_full Overcoming thermo-optical dynamics in broadband nanophotonic sensing
title_fullStr Overcoming thermo-optical dynamics in broadband nanophotonic sensing
title_full_unstemmed Overcoming thermo-optical dynamics in broadband nanophotonic sensing
title_sort Overcoming thermo-optical dynamics in broadband nanophotonic sensing
dc.creator.none.fl_str_mv Wang, Mingkang
Perez, Diego Javier
Aksyuk, Vladimir
author Wang, Mingkang
author_facet Wang, Mingkang
Perez, Diego Javier
Aksyuk, Vladimir
author_role author
author2 Perez, Diego Javier
Aksyuk, Vladimir
author2_role author
author
dc.subject.none.fl_str_mv Photonics sensor
MEMS
Transfer function
Thermo-optical effect
topic Photonics sensor
MEMS
Transfer function
Thermo-optical effect
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Advances in integrated photonics open up exciting opportunities for batch-fabricated optical sensors using high-quality-factor nanophotonic cavities to achieve ultrahigh sensitivities and bandwidths. The sensitivity improves with increasing optical power; however, localized absorption and heating within a micrometer-scale mode volume prominently distorts the cavity resonances and strongly couples the sensor response to thermal dynamics, limiting the sensitivity and hindering the measurement of broadband time-dependent signals. Here, we derive a frequency-dependent photonic sensor transfer function that accounts for thermo-optical dynamics and quantitatively describes the measured broadband optomechanical signal from an integrated photonic atomic force microscopy nanomechanical probe. Using this transfer function, the probe can be operated in the high optical power, strongly thermo-optically nonlinear regime, accurately measuring low- and intermediate-frequency components of a dynamic signal while reaching a sensitivity of 0.7 fm/Hz1/2 at high frequencies, an improvement of ≈10× relative to the best performance in the linear regime. Counterintuitively, we discover that a higher transduction gain and sensitivity are achieved with lower quality-factor optical modes for low signal frequencies. Not limited to optomechanical transducers, the derived transfer function is generally valid for describing the small-signal dynamic responses of a broad range of technologically important photonic sensors subject to the thermo-optical effect.
Fil: Wang, Mingkang. National Institute Of Standards And Technology; Estados Unidos. University of Maryland; Estados Unidos
Fil: Perez, Diego Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. National Institute Of Standards And Technology; Estados Unidos. University of Maryland; Estados Unidos
Fil: Aksyuk, Vladimir. National Institute Of Standards And Technology; Estados Unidos
description Advances in integrated photonics open up exciting opportunities for batch-fabricated optical sensors using high-quality-factor nanophotonic cavities to achieve ultrahigh sensitivities and bandwidths. The sensitivity improves with increasing optical power; however, localized absorption and heating within a micrometer-scale mode volume prominently distorts the cavity resonances and strongly couples the sensor response to thermal dynamics, limiting the sensitivity and hindering the measurement of broadband time-dependent signals. Here, we derive a frequency-dependent photonic sensor transfer function that accounts for thermo-optical dynamics and quantitatively describes the measured broadband optomechanical signal from an integrated photonic atomic force microscopy nanomechanical probe. Using this transfer function, the probe can be operated in the high optical power, strongly thermo-optically nonlinear regime, accurately measuring low- and intermediate-frequency components of a dynamic signal while reaching a sensitivity of 0.7 fm/Hz1/2 at high frequencies, an improvement of ≈10× relative to the best performance in the linear regime. Counterintuitively, we discover that a higher transduction gain and sensitivity are achieved with lower quality-factor optical modes for low signal frequencies. Not limited to optomechanical transducers, the derived transfer function is generally valid for describing the small-signal dynamic responses of a broad range of technologically important photonic sensors subject to the thermo-optical effect.
publishDate 2021
dc.date.none.fl_str_mv 2021-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/181700
Wang, Mingkang; Perez, Diego Javier; Aksyuk, Vladimir; Overcoming thermo-optical dynamics in broadband nanophotonic sensing; Nature Publishing Group; Microsystems and Nanoengineering; 7; 1; 12-2021; 1-11
2055-7434
CONICET Digital
CONICET
url http://hdl.handle.net/11336/181700
identifier_str_mv Wang, Mingkang; Perez, Diego Javier; Aksyuk, Vladimir; Overcoming thermo-optical dynamics in broadband nanophotonic sensing; Nature Publishing Group; Microsystems and Nanoengineering; 7; 1; 12-2021; 1-11
2055-7434
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.nature.com/articles/s41378-021-00281-y
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41378-021-00281-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613373472276480
score 13.070432