Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators
- Autores
- Wang, Mingkang; Perez, Diego Javier; Lopez, Daniel; Aksyuk, Vladimir A.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many nonlinear systems are described by eigenmodes with amplitude-dependent frequencies, interacting strongly whenever the frequencies become commensurate at internal resonances. Fast energy exchange via the resonances holds the key to rich dynamical behavior, such as time-varying relaxation rates and signatures of nonergodicity in thermal equilibrium, revealed in the recent experimental and theoretical studies of micro-and nanomechanical resonators. However, a universal yet intuitive physical description for these diverse and sometimes contradictory experimental observations remains elusive. Here we experimentally reveal persistent nonlinear phase-locked states occurring at internal resonances and demonstrate that they are essential for understanding the transient dynamics of nonlinear systems with coupled eigenmodes. The measured dynamics of a fully observable micromechanical resonator system are quantitatively described by the lower-frequency mode entering, maintaining, and exiting a persistent phase-locked period-Tripling state generated by the nonlinear driving force exerted by the higher-frequency mode. This model describes the observed phase-locked coherence times, the direction and magnitude of the energy exchange, and the resulting nonmonotonic mode energy evolution. Depending on the initial relative phase, the system selects distinct relaxation pathways, either entering or bypassing the locked state. The described persistent phase locking is not limited to particular frequency fractions or types of nonlinearities and may advance nonlinear resonator systems engineering across physical domains, including photonics as well as nanomechanics.
Fil: Wang, Mingkang. University of Maryland; Estados Unidos
Fil: Perez, Diego Javier. University of Maryland; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
Fil: Lopez, Daniel. State University of Pennsylvania; Estados Unidos
Fil: Aksyuk, Vladimir A.. National Institute Of Standards And Technology; Estados Unidos - Materia
-
Nonlinear Dynamics
MEMS resonators
Mechanics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/208679
Ver los metadatos del registro completo
id |
CONICETDig_f48e9059799f07f79e8afb965bdbde67 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/208679 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical ResonatorsWang, MingkangPerez, Diego JavierLopez, DanielAksyuk, Vladimir A.Nonlinear DynamicsMEMS resonatorsMechanicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Many nonlinear systems are described by eigenmodes with amplitude-dependent frequencies, interacting strongly whenever the frequencies become commensurate at internal resonances. Fast energy exchange via the resonances holds the key to rich dynamical behavior, such as time-varying relaxation rates and signatures of nonergodicity in thermal equilibrium, revealed in the recent experimental and theoretical studies of micro-and nanomechanical resonators. However, a universal yet intuitive physical description for these diverse and sometimes contradictory experimental observations remains elusive. Here we experimentally reveal persistent nonlinear phase-locked states occurring at internal resonances and demonstrate that they are essential for understanding the transient dynamics of nonlinear systems with coupled eigenmodes. The measured dynamics of a fully observable micromechanical resonator system are quantitatively described by the lower-frequency mode entering, maintaining, and exiting a persistent phase-locked period-Tripling state generated by the nonlinear driving force exerted by the higher-frequency mode. This model describes the observed phase-locked coherence times, the direction and magnitude of the energy exchange, and the resulting nonmonotonic mode energy evolution. Depending on the initial relative phase, the system selects distinct relaxation pathways, either entering or bypassing the locked state. The described persistent phase locking is not limited to particular frequency fractions or types of nonlinearities and may advance nonlinear resonator systems engineering across physical domains, including photonics as well as nanomechanics.Fil: Wang, Mingkang. University of Maryland; Estados UnidosFil: Perez, Diego Javier. University of Maryland; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; ArgentinaFil: Lopez, Daniel. State University of Pennsylvania; Estados UnidosFil: Aksyuk, Vladimir A.. National Institute Of Standards And Technology; Estados UnidosAmerican Physical Society2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/208679Wang, Mingkang; Perez, Diego Javier; Lopez, Daniel; Aksyuk, Vladimir A.; Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators; American Physical Society; Physical Review X; 12; 4; 12-2022; 1-182160-3308CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevX.12.041025info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevX.12.041025info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:08Zoai:ri.conicet.gov.ar:11336/208679instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:08.644CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators |
title |
Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators |
spellingShingle |
Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators Wang, Mingkang Nonlinear Dynamics MEMS resonators Mechanics |
title_short |
Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators |
title_full |
Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators |
title_fullStr |
Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators |
title_full_unstemmed |
Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators |
title_sort |
Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators |
dc.creator.none.fl_str_mv |
Wang, Mingkang Perez, Diego Javier Lopez, Daniel Aksyuk, Vladimir A. |
author |
Wang, Mingkang |
author_facet |
Wang, Mingkang Perez, Diego Javier Lopez, Daniel Aksyuk, Vladimir A. |
author_role |
author |
author2 |
Perez, Diego Javier Lopez, Daniel Aksyuk, Vladimir A. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Nonlinear Dynamics MEMS resonators Mechanics |
topic |
Nonlinear Dynamics MEMS resonators Mechanics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Many nonlinear systems are described by eigenmodes with amplitude-dependent frequencies, interacting strongly whenever the frequencies become commensurate at internal resonances. Fast energy exchange via the resonances holds the key to rich dynamical behavior, such as time-varying relaxation rates and signatures of nonergodicity in thermal equilibrium, revealed in the recent experimental and theoretical studies of micro-and nanomechanical resonators. However, a universal yet intuitive physical description for these diverse and sometimes contradictory experimental observations remains elusive. Here we experimentally reveal persistent nonlinear phase-locked states occurring at internal resonances and demonstrate that they are essential for understanding the transient dynamics of nonlinear systems with coupled eigenmodes. The measured dynamics of a fully observable micromechanical resonator system are quantitatively described by the lower-frequency mode entering, maintaining, and exiting a persistent phase-locked period-Tripling state generated by the nonlinear driving force exerted by the higher-frequency mode. This model describes the observed phase-locked coherence times, the direction and magnitude of the energy exchange, and the resulting nonmonotonic mode energy evolution. Depending on the initial relative phase, the system selects distinct relaxation pathways, either entering or bypassing the locked state. The described persistent phase locking is not limited to particular frequency fractions or types of nonlinearities and may advance nonlinear resonator systems engineering across physical domains, including photonics as well as nanomechanics. Fil: Wang, Mingkang. University of Maryland; Estados Unidos Fil: Perez, Diego Javier. University of Maryland; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina Fil: Lopez, Daniel. State University of Pennsylvania; Estados Unidos Fil: Aksyuk, Vladimir A.. National Institute Of Standards And Technology; Estados Unidos |
description |
Many nonlinear systems are described by eigenmodes with amplitude-dependent frequencies, interacting strongly whenever the frequencies become commensurate at internal resonances. Fast energy exchange via the resonances holds the key to rich dynamical behavior, such as time-varying relaxation rates and signatures of nonergodicity in thermal equilibrium, revealed in the recent experimental and theoretical studies of micro-and nanomechanical resonators. However, a universal yet intuitive physical description for these diverse and sometimes contradictory experimental observations remains elusive. Here we experimentally reveal persistent nonlinear phase-locked states occurring at internal resonances and demonstrate that they are essential for understanding the transient dynamics of nonlinear systems with coupled eigenmodes. The measured dynamics of a fully observable micromechanical resonator system are quantitatively described by the lower-frequency mode entering, maintaining, and exiting a persistent phase-locked period-Tripling state generated by the nonlinear driving force exerted by the higher-frequency mode. This model describes the observed phase-locked coherence times, the direction and magnitude of the energy exchange, and the resulting nonmonotonic mode energy evolution. Depending on the initial relative phase, the system selects distinct relaxation pathways, either entering or bypassing the locked state. The described persistent phase locking is not limited to particular frequency fractions or types of nonlinearities and may advance nonlinear resonator systems engineering across physical domains, including photonics as well as nanomechanics. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/208679 Wang, Mingkang; Perez, Diego Javier; Lopez, Daniel; Aksyuk, Vladimir A.; Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators; American Physical Society; Physical Review X; 12; 4; 12-2022; 1-18 2160-3308 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/208679 |
identifier_str_mv |
Wang, Mingkang; Perez, Diego Javier; Lopez, Daniel; Aksyuk, Vladimir A.; Persistent Nonlinear Phase-Locking and Nonmonotonic Energy Dissipation in Micromechanical Resonators; American Physical Society; Physical Review X; 12; 4; 12-2022; 1-18 2160-3308 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.aps.org/doi/10.1103/PhysRevX.12.041025 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevX.12.041025 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613626156023808 |
score |
13.070432 |