Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor

Autores
Wang, Mingkang; Perez, Diego Javier; Ramer, Georg; Pavlidis, Georges; Schwartz, Jeffrey J.; Yu, Liya; Ilic, Robert; Centrone, Andrea; Aksyuk, Vladimir A.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measurement method that reduces the effective transducer temperature and improves the measurement precision of a dynamic impulse response signal. Thermal noise–limited, integrated cavity optomechanical atomic force microscopy probes are used in a photothermal-induced resonance measurement to demonstrate an effective temperature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The method improves the experimental measurement precision and throughput by >2×, approaching the theoretical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to dynamic measurements leveraging thermal noise–limited harmonic transducers will have a broad impact across a variety of measurement platforms and scientific fields.
Fil: Wang, Mingkang. University of Maryland; Estados Unidos
Fil: Perez, Diego Javier. University of Maryland; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ramer, Georg. National Institute Of Standards And Technology; Estados Unidos. Technische Universitat Wien; Austria
Fil: Pavlidis, Georges. National Institute of Standards And Technology; Estados Unidos
Fil: Schwartz, Jeffrey J.. National Institute of Standards And Technology; Estados Unidos
Fil: Yu, Liya. National Institute of Standards And Technology; Estados Unidos
Fil: Ilic, Robert. National Institute of Standards And Technology; Estados Unidos
Fil: Centrone, Andrea. National Institute of Standards And Technology; Estados Unidos
Fil: Aksyuk, Vladimir A.. National Institute of Standards And Technology; Estados Unidos
Materia
OPTOMECHANICAL
PROBES
PHOTONICS
PTIR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/228581

id CONICETDig_622344f9e36ca2998102653b0f2d77f8
oai_identifier_str oai:ri.conicet.gov.ar:11336/228581
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensorWang, MingkangPerez, Diego JavierRamer, GeorgPavlidis, GeorgesSchwartz, Jeffrey J.Yu, LiyaIlic, RobertCentrone, AndreaAksyuk, Vladimir A.OPTOMECHANICALPROBESPHOTONICSPTIRhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measurement method that reduces the effective transducer temperature and improves the measurement precision of a dynamic impulse response signal. Thermal noise–limited, integrated cavity optomechanical atomic force microscopy probes are used in a photothermal-induced resonance measurement to demonstrate an effective temperature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The method improves the experimental measurement precision and throughput by >2×, approaching the theoretical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to dynamic measurements leveraging thermal noise–limited harmonic transducers will have a broad impact across a variety of measurement platforms and scientific fields.Fil: Wang, Mingkang. University of Maryland; Estados UnidosFil: Perez, Diego Javier. University of Maryland; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ramer, Georg. National Institute Of Standards And Technology; Estados Unidos. Technische Universitat Wien; AustriaFil: Pavlidis, Georges. National Institute of Standards And Technology; Estados UnidosFil: Schwartz, Jeffrey J.. National Institute of Standards And Technology; Estados UnidosFil: Yu, Liya. National Institute of Standards And Technology; Estados UnidosFil: Ilic, Robert. National Institute of Standards And Technology; Estados UnidosFil: Centrone, Andrea. National Institute of Standards And Technology; Estados UnidosFil: Aksyuk, Vladimir A.. National Institute of Standards And Technology; Estados UnidosScience Advances is the American Association for the Advancement of Science2023-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228581Wang, Mingkang; Perez, Diego Javier; Ramer, Georg; Pavlidis, Georges; Schwartz, Jeffrey J.; et al.; Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor; Science Advances is the American Association for the Advancement of Science; Science Advances; 9; 11; 3-2023; 1-112375-2548CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.science.org/doi/10.1126/sciadv.adf7595info:eu-repo/semantics/altIdentifier/doi/10.1126/sciadv.adf7595info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:55Zoai:ri.conicet.gov.ar:11336/228581instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:55.266CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor
title Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor
spellingShingle Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor
Wang, Mingkang
OPTOMECHANICAL
PROBES
PHOTONICS
PTIR
title_short Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor
title_full Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor
title_fullStr Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor
title_full_unstemmed Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor
title_sort Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor
dc.creator.none.fl_str_mv Wang, Mingkang
Perez, Diego Javier
Ramer, Georg
Pavlidis, Georges
Schwartz, Jeffrey J.
Yu, Liya
Ilic, Robert
Centrone, Andrea
Aksyuk, Vladimir A.
author Wang, Mingkang
author_facet Wang, Mingkang
Perez, Diego Javier
Ramer, Georg
Pavlidis, Georges
Schwartz, Jeffrey J.
Yu, Liya
Ilic, Robert
Centrone, Andrea
Aksyuk, Vladimir A.
author_role author
author2 Perez, Diego Javier
Ramer, Georg
Pavlidis, Georges
Schwartz, Jeffrey J.
Yu, Liya
Ilic, Robert
Centrone, Andrea
Aksyuk, Vladimir A.
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv OPTOMECHANICAL
PROBES
PHOTONICS
PTIR
topic OPTOMECHANICAL
PROBES
PHOTONICS
PTIR
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measurement method that reduces the effective transducer temperature and improves the measurement precision of a dynamic impulse response signal. Thermal noise–limited, integrated cavity optomechanical atomic force microscopy probes are used in a photothermal-induced resonance measurement to demonstrate an effective temperature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The method improves the experimental measurement precision and throughput by >2×, approaching the theoretical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to dynamic measurements leveraging thermal noise–limited harmonic transducers will have a broad impact across a variety of measurement platforms and scientific fields.
Fil: Wang, Mingkang. University of Maryland; Estados Unidos
Fil: Perez, Diego Javier. University of Maryland; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Ramer, Georg. National Institute Of Standards And Technology; Estados Unidos. Technische Universitat Wien; Austria
Fil: Pavlidis, Georges. National Institute of Standards And Technology; Estados Unidos
Fil: Schwartz, Jeffrey J.. National Institute of Standards And Technology; Estados Unidos
Fil: Yu, Liya. National Institute of Standards And Technology; Estados Unidos
Fil: Ilic, Robert. National Institute of Standards And Technology; Estados Unidos
Fil: Centrone, Andrea. National Institute of Standards And Technology; Estados Unidos
Fil: Aksyuk, Vladimir A.. National Institute of Standards And Technology; Estados Unidos
description Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measurement method that reduces the effective transducer temperature and improves the measurement precision of a dynamic impulse response signal. Thermal noise–limited, integrated cavity optomechanical atomic force microscopy probes are used in a photothermal-induced resonance measurement to demonstrate an effective temperature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The method improves the experimental measurement precision and throughput by >2×, approaching the theoretical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to dynamic measurements leveraging thermal noise–limited harmonic transducers will have a broad impact across a variety of measurement platforms and scientific fields.
publishDate 2023
dc.date.none.fl_str_mv 2023-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/228581
Wang, Mingkang; Perez, Diego Javier; Ramer, Georg; Pavlidis, Georges; Schwartz, Jeffrey J.; et al.; Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor; Science Advances is the American Association for the Advancement of Science; Science Advances; 9; 11; 3-2023; 1-11
2375-2548
CONICET Digital
CONICET
url http://hdl.handle.net/11336/228581
identifier_str_mv Wang, Mingkang; Perez, Diego Javier; Ramer, Georg; Pavlidis, Georges; Schwartz, Jeffrey J.; et al.; Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor; Science Advances is the American Association for the Advancement of Science; Science Advances; 9; 11; 3-2023; 1-11
2375-2548
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.science.org/doi/10.1126/sciadv.adf7595
info:eu-repo/semantics/altIdentifier/doi/10.1126/sciadv.adf7595
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Science Advances is the American Association for the Advancement of Science
publisher.none.fl_str_mv Science Advances is the American Association for the Advancement of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269001375285248
score 13.13397