Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer
- Autores
- Williams, Nikki; Parnaik, Tanay; Dutta, Saptarshi; Bergen, Joseph; Cattaneo, Mauricio; Parada, Giovanny A.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Multiple mechanisms have been proposed to explain the electrochemical proton-coupled electron transfer (PCET) of arylenediamines upon weak base addition in aprotic media. Similar to quinone electrochemistry, endergonic deprotonation to form freely diffusing products is a central criterion used to exclude proton transfer. However, the second oxidation wave of arylenediamines shows large, chemically reversible E1/2 shifts─often exceeding hundreds of millivolts─upon base addition. To explain these effects, proposed mechanisms invoke strong H-bonding or H-bonding followed by nonconcerted PCET. Here, we elucidate a new mechanism using cyclic voltammetry of a new arylenediamine series where the pKa is varied via π-electron spacers. A thermochemical analysis, based on equilibrium constants derived from biphasic E1/2 shifts observed from substoichiometric to excess base concentrations, supports a stepwise mechanism. This mechanism involves two sequential heterogeneous electron transfer steps (EE) followed by three homogeneous chemical steps (CCC), constituting an overall EECCC electrochemical mechanism. The CCC coupled equilibria correspond to exergonic H-bond precursor complex formation, thermoneutral proton transfer (PT), and endergonic successor complex dissociation. The energy well formed by the CCC coupled equilibria reconciles previous thermochemical analyses and provides a new explanation for chemically reversible electrochemical waves. Furthermore, a reactivity continuum between H-bonding and PT is demonstrated, which contrasts with the prevailing view, where either H-bonding or PT dominates the mechanism.
Fil: Williams, Nikki. The College Of New Jersey; Estados Unidos
Fil: Parnaik, Tanay. The College Of New Jersey; Estados Unidos
Fil: Dutta, Saptarshi. The College Of New Jersey; Estados Unidos
Fil: Bergen, Joseph. The College Of New Jersey; Estados Unidos
Fil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina
Fil: Parada, Giovanny A.. The College Of New Jersey; Estados Unidos - Materia
-
Mecanismo electroquímico
Puente hidrogeno
PCET
Multiredox - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/277471
Ver los metadatos del registro completo
| id |
CONICETDig_bfa06048aac8166bf024cd0da16af0f0 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/277471 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron TransferWilliams, NikkiParnaik, TanayDutta, SaptarshiBergen, JosephCattaneo, MauricioParada, Giovanny A.Mecanismo electroquímicoPuente hidrogenoPCETMultiredoxhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Multiple mechanisms have been proposed to explain the electrochemical proton-coupled electron transfer (PCET) of arylenediamines upon weak base addition in aprotic media. Similar to quinone electrochemistry, endergonic deprotonation to form freely diffusing products is a central criterion used to exclude proton transfer. However, the second oxidation wave of arylenediamines shows large, chemically reversible E1/2 shifts─often exceeding hundreds of millivolts─upon base addition. To explain these effects, proposed mechanisms invoke strong H-bonding or H-bonding followed by nonconcerted PCET. Here, we elucidate a new mechanism using cyclic voltammetry of a new arylenediamine series where the pKa is varied via π-electron spacers. A thermochemical analysis, based on equilibrium constants derived from biphasic E1/2 shifts observed from substoichiometric to excess base concentrations, supports a stepwise mechanism. This mechanism involves two sequential heterogeneous electron transfer steps (EE) followed by three homogeneous chemical steps (CCC), constituting an overall EECCC electrochemical mechanism. The CCC coupled equilibria correspond to exergonic H-bond precursor complex formation, thermoneutral proton transfer (PT), and endergonic successor complex dissociation. The energy well formed by the CCC coupled equilibria reconciles previous thermochemical analyses and provides a new explanation for chemically reversible electrochemical waves. Furthermore, a reactivity continuum between H-bonding and PT is demonstrated, which contrasts with the prevailing view, where either H-bonding or PT dominates the mechanism.Fil: Williams, Nikki. The College Of New Jersey; Estados UnidosFil: Parnaik, Tanay. The College Of New Jersey; Estados UnidosFil: Dutta, Saptarshi. The College Of New Jersey; Estados UnidosFil: Bergen, Joseph. The College Of New Jersey; Estados UnidosFil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; ArgentinaFil: Parada, Giovanny A.. The College Of New Jersey; Estados UnidosAmerican Chemical Society2025-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/277471Williams, Nikki; Parnaik, Tanay; Dutta, Saptarshi; Bergen, Joseph; Cattaneo, Mauricio; et al.; Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer; American Chemical Society; ACS Omega; 2025; 10-2025; 1-102470-1343CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.5c06783info:eu-repo/semantics/altIdentifier/doi/10.1021/acsomega.5c06783info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:28:03Zoai:ri.conicet.gov.ar:11336/277471instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:28:03.502CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer |
| title |
Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer |
| spellingShingle |
Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer Williams, Nikki Mecanismo electroquímico Puente hidrogeno PCET Multiredox |
| title_short |
Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer |
| title_full |
Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer |
| title_fullStr |
Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer |
| title_full_unstemmed |
Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer |
| title_sort |
Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer |
| dc.creator.none.fl_str_mv |
Williams, Nikki Parnaik, Tanay Dutta, Saptarshi Bergen, Joseph Cattaneo, Mauricio Parada, Giovanny A. |
| author |
Williams, Nikki |
| author_facet |
Williams, Nikki Parnaik, Tanay Dutta, Saptarshi Bergen, Joseph Cattaneo, Mauricio Parada, Giovanny A. |
| author_role |
author |
| author2 |
Parnaik, Tanay Dutta, Saptarshi Bergen, Joseph Cattaneo, Mauricio Parada, Giovanny A. |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Mecanismo electroquímico Puente hidrogeno PCET Multiredox |
| topic |
Mecanismo electroquímico Puente hidrogeno PCET Multiredox |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Multiple mechanisms have been proposed to explain the electrochemical proton-coupled electron transfer (PCET) of arylenediamines upon weak base addition in aprotic media. Similar to quinone electrochemistry, endergonic deprotonation to form freely diffusing products is a central criterion used to exclude proton transfer. However, the second oxidation wave of arylenediamines shows large, chemically reversible E1/2 shifts─often exceeding hundreds of millivolts─upon base addition. To explain these effects, proposed mechanisms invoke strong H-bonding or H-bonding followed by nonconcerted PCET. Here, we elucidate a new mechanism using cyclic voltammetry of a new arylenediamine series where the pKa is varied via π-electron spacers. A thermochemical analysis, based on equilibrium constants derived from biphasic E1/2 shifts observed from substoichiometric to excess base concentrations, supports a stepwise mechanism. This mechanism involves two sequential heterogeneous electron transfer steps (EE) followed by three homogeneous chemical steps (CCC), constituting an overall EECCC electrochemical mechanism. The CCC coupled equilibria correspond to exergonic H-bond precursor complex formation, thermoneutral proton transfer (PT), and endergonic successor complex dissociation. The energy well formed by the CCC coupled equilibria reconciles previous thermochemical analyses and provides a new explanation for chemically reversible electrochemical waves. Furthermore, a reactivity continuum between H-bonding and PT is demonstrated, which contrasts with the prevailing view, where either H-bonding or PT dominates the mechanism. Fil: Williams, Nikki. The College Of New Jersey; Estados Unidos Fil: Parnaik, Tanay. The College Of New Jersey; Estados Unidos Fil: Dutta, Saptarshi. The College Of New Jersey; Estados Unidos Fil: Bergen, Joseph. The College Of New Jersey; Estados Unidos Fil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina Fil: Parada, Giovanny A.. The College Of New Jersey; Estados Unidos |
| description |
Multiple mechanisms have been proposed to explain the electrochemical proton-coupled electron transfer (PCET) of arylenediamines upon weak base addition in aprotic media. Similar to quinone electrochemistry, endergonic deprotonation to form freely diffusing products is a central criterion used to exclude proton transfer. However, the second oxidation wave of arylenediamines shows large, chemically reversible E1/2 shifts─often exceeding hundreds of millivolts─upon base addition. To explain these effects, proposed mechanisms invoke strong H-bonding or H-bonding followed by nonconcerted PCET. Here, we elucidate a new mechanism using cyclic voltammetry of a new arylenediamine series where the pKa is varied via π-electron spacers. A thermochemical analysis, based on equilibrium constants derived from biphasic E1/2 shifts observed from substoichiometric to excess base concentrations, supports a stepwise mechanism. This mechanism involves two sequential heterogeneous electron transfer steps (EE) followed by three homogeneous chemical steps (CCC), constituting an overall EECCC electrochemical mechanism. The CCC coupled equilibria correspond to exergonic H-bond precursor complex formation, thermoneutral proton transfer (PT), and endergonic successor complex dissociation. The energy well formed by the CCC coupled equilibria reconciles previous thermochemical analyses and provides a new explanation for chemically reversible electrochemical waves. Furthermore, a reactivity continuum between H-bonding and PT is demonstrated, which contrasts with the prevailing view, where either H-bonding or PT dominates the mechanism. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/277471 Williams, Nikki; Parnaik, Tanay; Dutta, Saptarshi; Bergen, Joseph; Cattaneo, Mauricio; et al.; Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer; American Chemical Society; ACS Omega; 2025; 10-2025; 1-10 2470-1343 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/277471 |
| identifier_str_mv |
Williams, Nikki; Parnaik, Tanay; Dutta, Saptarshi; Bergen, Joseph; Cattaneo, Mauricio; et al.; Revisiting H-Bond v . PT: The Role of Precursor and Successor Complexes in Intermolecular, Stepwise Proton-Coupled Electron Transfer; American Chemical Society; ACS Omega; 2025; 10-2025; 1-10 2470-1343 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acsomega.5c06783 info:eu-repo/semantics/altIdentifier/doi/10.1021/acsomega.5c06783 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335162365313024 |
| score |
12.952241 |