Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory
- Autores
- Schrauben, Joel N.; Cattaneo, Mauricio; Day, Thomas C.; Tenderholt, Adam L.; Mayer, James M.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Photo-oxidations of hydrogen-bonded phenols using excited-state polyarenes are described to derive fundamental understanding of multiple-site concerted proton-electron transfer reactions (MS-CPET). Experiments have examined phenol bases having -CPh2NH2, -Py, and -CH2Py groups ortho to the phenol hydroxyl group and tert-butyl groups in the 4,6-positions for stability (HOAr-NH2, HOAr-Py, and HOAr-CH2Py, respectively; Py = pyridyl; Ph = phenyl). The photo-oxidations proceed by intramolecular proton transfer from the phenol to the pendent base concerted with electron transfer to the excited polyarene. For comparison, 2,4,6- tBu3C6H2OH, a phenol without a pendent base and tert-butyl groups in the 2,4,6-positions, has also been examined. Many of these bimolecular reactions are fast, with rate constants near the diffusion limit. Combining the photochemical kCPET values with those from prior thermal stopped-flow kinetic studies gives data sets for the oxidations of HOAr-NH2 and HOAr-CH2Py that span over 107 in kCPET and nearly 0.9 eV in driving force (ΔGo′). Plots of log(kCPET) vs ΔG o′, including both excited-state anthracenes and ground state aminium radical cations, define a single Marcus parabola in each case. These two data sets are thus well described by semiclassical Marcus theory, providing a strong validation of the use of this theory for MS-CPET. The parabolas give λCPET 1.15-1.2 eV and Hab 20-30 cm-1. These experiments represent the most direct measurements of Hab for MS-CPET reactions to date. Although rate constants are available only up to the diffusion limit, the parabolas clearly peak well below the adiabatic limit of ca. 6 × 1012 s-1. Thus, this is a very clear demonstration that the reactions are nonadiabatic. The nonadiabatic character slows the reactions by a factor of ∼45. Results for the oxidation of HOAr-Py, in which the phenol and base are conjugated, and for oxidation of 2,4,6-tBu3C6H2OH, which lacks a base, show that both have substantially lower λ and larger pre-exponential terms. The implications of these results for MS-CPET reactions are discussed.
Fil: Schrauben, Joel N.. University of Washington; Estados Unidos. National Renewable Energy Laboratory; Estados Unidos
Fil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina. University of Washington; Estados Unidos
Fil: Day, Thomas C.. University of Washington; Estados Unidos
Fil: Tenderholt, Adam L.. University of Washington; Estados Unidos. Target Discovery, Inc.; Estados Unidos
Fil: Mayer, James M.. University of Washington; Estados Unidos - Materia
-
Electron transfer
Proton transfer
Marcus theory
PCET - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/52395
Ver los metadatos del registro completo
id |
CONICETDig_082f6e6ee22bdf74795e64e283939776 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/52395 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theorySchrauben, Joel N.Cattaneo, MauricioDay, Thomas C.Tenderholt, Adam L.Mayer, James M.Electron transferProton transferMarcus theoryPCEThttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Photo-oxidations of hydrogen-bonded phenols using excited-state polyarenes are described to derive fundamental understanding of multiple-site concerted proton-electron transfer reactions (MS-CPET). Experiments have examined phenol bases having -CPh2NH2, -Py, and -CH2Py groups ortho to the phenol hydroxyl group and tert-butyl groups in the 4,6-positions for stability (HOAr-NH2, HOAr-Py, and HOAr-CH2Py, respectively; Py = pyridyl; Ph = phenyl). The photo-oxidations proceed by intramolecular proton transfer from the phenol to the pendent base concerted with electron transfer to the excited polyarene. For comparison, 2,4,6- tBu3C6H2OH, a phenol without a pendent base and tert-butyl groups in the 2,4,6-positions, has also been examined. Many of these bimolecular reactions are fast, with rate constants near the diffusion limit. Combining the photochemical kCPET values with those from prior thermal stopped-flow kinetic studies gives data sets for the oxidations of HOAr-NH2 and HOAr-CH2Py that span over 107 in kCPET and nearly 0.9 eV in driving force (ΔGo′). Plots of log(kCPET) vs ΔG o′, including both excited-state anthracenes and ground state aminium radical cations, define a single Marcus parabola in each case. These two data sets are thus well described by semiclassical Marcus theory, providing a strong validation of the use of this theory for MS-CPET. The parabolas give λCPET 1.15-1.2 eV and Hab 20-30 cm-1. These experiments represent the most direct measurements of Hab for MS-CPET reactions to date. Although rate constants are available only up to the diffusion limit, the parabolas clearly peak well below the adiabatic limit of ca. 6 × 1012 s-1. Thus, this is a very clear demonstration that the reactions are nonadiabatic. The nonadiabatic character slows the reactions by a factor of ∼45. Results for the oxidation of HOAr-Py, in which the phenol and base are conjugated, and for oxidation of 2,4,6-tBu3C6H2OH, which lacks a base, show that both have substantially lower λ and larger pre-exponential terms. The implications of these results for MS-CPET reactions are discussed.Fil: Schrauben, Joel N.. University of Washington; Estados Unidos. National Renewable Energy Laboratory; Estados UnidosFil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina. University of Washington; Estados UnidosFil: Day, Thomas C.. University of Washington; Estados UnidosFil: Tenderholt, Adam L.. University of Washington; Estados Unidos. Target Discovery, Inc.; Estados UnidosFil: Mayer, James M.. University of Washington; Estados UnidosAmerican Chemical Society2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/52395Schrauben, Joel N.; Cattaneo, Mauricio; Day, Thomas C.; Tenderholt, Adam L.; Mayer, James M.; Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory; American Chemical Society; Journal of the American Chemical Society; 134; 40; 10-2012; 16635-166450002-7863CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3476473/info:eu-repo/semantics/altIdentifier/doi/10.1021/ja305668hinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/ja305668hinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:34Zoai:ri.conicet.gov.ar:11336/52395instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:34.787CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory |
title |
Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory |
spellingShingle |
Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory Schrauben, Joel N. Electron transfer Proton transfer Marcus theory PCET |
title_short |
Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory |
title_full |
Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory |
title_fullStr |
Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory |
title_full_unstemmed |
Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory |
title_sort |
Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory |
dc.creator.none.fl_str_mv |
Schrauben, Joel N. Cattaneo, Mauricio Day, Thomas C. Tenderholt, Adam L. Mayer, James M. |
author |
Schrauben, Joel N. |
author_facet |
Schrauben, Joel N. Cattaneo, Mauricio Day, Thomas C. Tenderholt, Adam L. Mayer, James M. |
author_role |
author |
author2 |
Cattaneo, Mauricio Day, Thomas C. Tenderholt, Adam L. Mayer, James M. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Electron transfer Proton transfer Marcus theory PCET |
topic |
Electron transfer Proton transfer Marcus theory PCET |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Photo-oxidations of hydrogen-bonded phenols using excited-state polyarenes are described to derive fundamental understanding of multiple-site concerted proton-electron transfer reactions (MS-CPET). Experiments have examined phenol bases having -CPh2NH2, -Py, and -CH2Py groups ortho to the phenol hydroxyl group and tert-butyl groups in the 4,6-positions for stability (HOAr-NH2, HOAr-Py, and HOAr-CH2Py, respectively; Py = pyridyl; Ph = phenyl). The photo-oxidations proceed by intramolecular proton transfer from the phenol to the pendent base concerted with electron transfer to the excited polyarene. For comparison, 2,4,6- tBu3C6H2OH, a phenol without a pendent base and tert-butyl groups in the 2,4,6-positions, has also been examined. Many of these bimolecular reactions are fast, with rate constants near the diffusion limit. Combining the photochemical kCPET values with those from prior thermal stopped-flow kinetic studies gives data sets for the oxidations of HOAr-NH2 and HOAr-CH2Py that span over 107 in kCPET and nearly 0.9 eV in driving force (ΔGo′). Plots of log(kCPET) vs ΔG o′, including both excited-state anthracenes and ground state aminium radical cations, define a single Marcus parabola in each case. These two data sets are thus well described by semiclassical Marcus theory, providing a strong validation of the use of this theory for MS-CPET. The parabolas give λCPET 1.15-1.2 eV and Hab 20-30 cm-1. These experiments represent the most direct measurements of Hab for MS-CPET reactions to date. Although rate constants are available only up to the diffusion limit, the parabolas clearly peak well below the adiabatic limit of ca. 6 × 1012 s-1. Thus, this is a very clear demonstration that the reactions are nonadiabatic. The nonadiabatic character slows the reactions by a factor of ∼45. Results for the oxidation of HOAr-Py, in which the phenol and base are conjugated, and for oxidation of 2,4,6-tBu3C6H2OH, which lacks a base, show that both have substantially lower λ and larger pre-exponential terms. The implications of these results for MS-CPET reactions are discussed. Fil: Schrauben, Joel N.. University of Washington; Estados Unidos. National Renewable Energy Laboratory; Estados Unidos Fil: Cattaneo, Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Química del Noroeste. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia. Instituto de Química del Noroeste; Argentina. University of Washington; Estados Unidos Fil: Day, Thomas C.. University of Washington; Estados Unidos Fil: Tenderholt, Adam L.. University of Washington; Estados Unidos. Target Discovery, Inc.; Estados Unidos Fil: Mayer, James M.. University of Washington; Estados Unidos |
description |
Photo-oxidations of hydrogen-bonded phenols using excited-state polyarenes are described to derive fundamental understanding of multiple-site concerted proton-electron transfer reactions (MS-CPET). Experiments have examined phenol bases having -CPh2NH2, -Py, and -CH2Py groups ortho to the phenol hydroxyl group and tert-butyl groups in the 4,6-positions for stability (HOAr-NH2, HOAr-Py, and HOAr-CH2Py, respectively; Py = pyridyl; Ph = phenyl). The photo-oxidations proceed by intramolecular proton transfer from the phenol to the pendent base concerted with electron transfer to the excited polyarene. For comparison, 2,4,6- tBu3C6H2OH, a phenol without a pendent base and tert-butyl groups in the 2,4,6-positions, has also been examined. Many of these bimolecular reactions are fast, with rate constants near the diffusion limit. Combining the photochemical kCPET values with those from prior thermal stopped-flow kinetic studies gives data sets for the oxidations of HOAr-NH2 and HOAr-CH2Py that span over 107 in kCPET and nearly 0.9 eV in driving force (ΔGo′). Plots of log(kCPET) vs ΔG o′, including both excited-state anthracenes and ground state aminium radical cations, define a single Marcus parabola in each case. These two data sets are thus well described by semiclassical Marcus theory, providing a strong validation of the use of this theory for MS-CPET. The parabolas give λCPET 1.15-1.2 eV and Hab 20-30 cm-1. These experiments represent the most direct measurements of Hab for MS-CPET reactions to date. Although rate constants are available only up to the diffusion limit, the parabolas clearly peak well below the adiabatic limit of ca. 6 × 1012 s-1. Thus, this is a very clear demonstration that the reactions are nonadiabatic. The nonadiabatic character slows the reactions by a factor of ∼45. Results for the oxidation of HOAr-Py, in which the phenol and base are conjugated, and for oxidation of 2,4,6-tBu3C6H2OH, which lacks a base, show that both have substantially lower λ and larger pre-exponential terms. The implications of these results for MS-CPET reactions are discussed. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/52395 Schrauben, Joel N.; Cattaneo, Mauricio; Day, Thomas C.; Tenderholt, Adam L.; Mayer, James M.; Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory; American Chemical Society; Journal of the American Chemical Society; 134; 40; 10-2012; 16635-16645 0002-7863 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/52395 |
identifier_str_mv |
Schrauben, Joel N.; Cattaneo, Mauricio; Day, Thomas C.; Tenderholt, Adam L.; Mayer, James M.; Multiple-site concerted proton-electron transfer reactions of hydrogen-bonded phenols are nonadiabatic and well described by semiclassical marcus theory; American Chemical Society; Journal of the American Chemical Society; 134; 40; 10-2012; 16635-16645 0002-7863 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3476473/ info:eu-repo/semantics/altIdentifier/doi/10.1021/ja305668h info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/ja305668h |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270125405765632 |
score |
13.13397 |