An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks
- Autores
- Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms.
Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina - Materia
-
Recommendation Algorithms
Social Networks
Large Scale Processing
Graph Databases
Graph Processing Frameworks
Work Scheduling - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6823
Ver los metadatos del registro completo
id |
CONICETDig_bec79fe07440dade2c1b7b551815d933 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6823 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social NetworksCorbellini, AlejandroMateos Diaz, Cristian MaximilianoGodoy, Daniela LisZunino Suarez, Alejandro OctavioSchiaffino, Silvia NoemiRecommendation AlgorithmsSocial NetworksLarge Scale ProcessingGraph DatabasesGraph Processing FrameworksWork Schedulinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms.Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaSage Publications Ltd2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/zipapplication/pdfapplication/zipapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6823Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks; Sage Publications Ltd; Journal Of Information Science; 41; 5; 6-2015; 686-7040165-5515enginfo:eu-repo/semantics/altIdentifier/url/http://jis.sagepub.com/content/41/5/686.shortinfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1177/0165551515588669info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:14Zoai:ri.conicet.gov.ar:11336/6823instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:15.194CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks |
title |
An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks |
spellingShingle |
An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks Corbellini, Alejandro Recommendation Algorithms Social Networks Large Scale Processing Graph Databases Graph Processing Frameworks Work Scheduling |
title_short |
An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks |
title_full |
An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks |
title_fullStr |
An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks |
title_full_unstemmed |
An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks |
title_sort |
An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks |
dc.creator.none.fl_str_mv |
Corbellini, Alejandro Mateos Diaz, Cristian Maximiliano Godoy, Daniela Lis Zunino Suarez, Alejandro Octavio Schiaffino, Silvia Noemi |
author |
Corbellini, Alejandro |
author_facet |
Corbellini, Alejandro Mateos Diaz, Cristian Maximiliano Godoy, Daniela Lis Zunino Suarez, Alejandro Octavio Schiaffino, Silvia Noemi |
author_role |
author |
author2 |
Mateos Diaz, Cristian Maximiliano Godoy, Daniela Lis Zunino Suarez, Alejandro Octavio Schiaffino, Silvia Noemi |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Recommendation Algorithms Social Networks Large Scale Processing Graph Databases Graph Processing Frameworks Work Scheduling |
topic |
Recommendation Algorithms Social Networks Large Scale Processing Graph Databases Graph Processing Frameworks Work Scheduling |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms. Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina |
description |
The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6823 Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks; Sage Publications Ltd; Journal Of Information Science; 41; 5; 6-2015; 686-704 0165-5515 |
url |
http://hdl.handle.net/11336/6823 |
identifier_str_mv |
Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks; Sage Publications Ltd; Journal Of Information Science; 41; 5; 6-2015; 686-704 0165-5515 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://jis.sagepub.com/content/41/5/686.short info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/doi/10.1177/0165551515588669 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/zip application/pdf application/zip application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sage Publications Ltd |
publisher.none.fl_str_mv |
Sage Publications Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083341394116608 |
score |
13.22299 |