An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks

Autores
Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms.
Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Materia
Recommendation Algorithms
Social Networks
Large Scale Processing
Graph Databases
Graph Processing Frameworks
Work Scheduling
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/6823

id CONICETDig_bec79fe07440dade2c1b7b551815d933
oai_identifier_str oai:ri.conicet.gov.ar:11336/6823
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social NetworksCorbellini, AlejandroMateos Diaz, Cristian MaximilianoGodoy, Daniela LisZunino Suarez, Alejandro OctavioSchiaffino, Silvia NoemiRecommendation AlgorithmsSocial NetworksLarge Scale ProcessingGraph DatabasesGraph Processing FrameworksWork Schedulinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms.Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaSage Publications Ltd2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/zipapplication/pdfapplication/zipapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6823Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks; Sage Publications Ltd; Journal Of Information Science; 41; 5; 6-2015; 686-7040165-5515enginfo:eu-repo/semantics/altIdentifier/url/http://jis.sagepub.com/content/41/5/686.shortinfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/doi/10.1177/0165551515588669info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:14Zoai:ri.conicet.gov.ar:11336/6823instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:15.194CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks
title An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks
spellingShingle An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks
Corbellini, Alejandro
Recommendation Algorithms
Social Networks
Large Scale Processing
Graph Databases
Graph Processing Frameworks
Work Scheduling
title_short An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks
title_full An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks
title_fullStr An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks
title_full_unstemmed An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks
title_sort An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks
dc.creator.none.fl_str_mv Corbellini, Alejandro
Mateos Diaz, Cristian Maximiliano
Godoy, Daniela Lis
Zunino Suarez, Alejandro Octavio
Schiaffino, Silvia Noemi
author Corbellini, Alejandro
author_facet Corbellini, Alejandro
Mateos Diaz, Cristian Maximiliano
Godoy, Daniela Lis
Zunino Suarez, Alejandro Octavio
Schiaffino, Silvia Noemi
author_role author
author2 Mateos Diaz, Cristian Maximiliano
Godoy, Daniela Lis
Zunino Suarez, Alejandro Octavio
Schiaffino, Silvia Noemi
author2_role author
author
author
author
dc.subject.none.fl_str_mv Recommendation Algorithms
Social Networks
Large Scale Processing
Graph Databases
Graph Processing Frameworks
Work Scheduling
topic Recommendation Algorithms
Social Networks
Large Scale Processing
Graph Databases
Graph Processing Frameworks
Work Scheduling
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms.
Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
description The creation of new and better recommendation algorithms for social networks is currently receiving much attention owing to the increasing need for new tools to assist users. The volume of available social data as well as experimental datasets force recommendation algorithms to scale to many computers. Given that social networks can be modelled as graphs, a distributed graph-oriented support able to exploit computer clusters arises as a necessity. In this work, we propose an architecture, called Lightweight-Massive Graph Processing Architecture, which simplifies the design of graph-based recommendation algorithms on clusters of computers, and a Java implementation for this architecture composed of two parts: Graphly, an API offering operations to access graphs; and jLiME, a framework that supports the distribution of algorithm code and graph data. The motivation behind the creation of this architecture is to allow users to define recommendation algorithms through the API and then customize their execution using job distribution strategies, without modifying the original algorithm. Thus, algorithms can be programmed and evaluated without the burden of thinking about distribution and parallel concerns, while still supporting environment-level tuning of the distributed execution. To validate the proposal, the current implementation of the architecture was tested using a followee recommendation algorithm for Twitter as case study. These experiments illustrate the graph API, quantitatively evaluate different job distribution strategies w.r.t. recommendation time and resource usage, and demonstrate the importance of providing non-invasive tuning for recommendation algorithms.
publishDate 2015
dc.date.none.fl_str_mv 2015-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/6823
Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks; Sage Publications Ltd; Journal Of Information Science; 41; 5; 6-2015; 686-704
0165-5515
url http://hdl.handle.net/11336/6823
identifier_str_mv Corbellini, Alejandro; Mateos Diaz, Cristian Maximiliano; Godoy, Daniela Lis; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; An Architecture and Platform for Developing Distributed Recommendation Algorithms on Large-Scale Social Networks; Sage Publications Ltd; Journal Of Information Science; 41; 5; 6-2015; 686-704
0165-5515
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://jis.sagepub.com/content/41/5/686.short
info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/doi/10.1177/0165551515588669
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/zip
application/pdf
application/zip
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Sage Publications Ltd
publisher.none.fl_str_mv Sage Publications Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083341394116608
score 13.22299