A programming interface and framework for developing recommendation algorithms on large-scale social networks

Autores
Corbellini, Alejandro; Godoy, Daniela Lis; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Friend recommendation algorithms in large-scale social networks such as Facebook or Twitter usually require the exploration of huge user graphs. In current solutions for parallelizing graph algorithms, the burden of dealing with distributed concerns falls on algorithm developers. In this paper, a simple yet powerful programming interface (API) to implement distributed graph traversal algorithms is presented. A case study on implementing a followee recommendation algorithm for Twitter using the API is described. This case study not only illustrates the simplicity offered by the API for developing algorithms, but also how different aspects of the distributed solutions can be treated and experimented without altering the algorithm code. Experiments evaluating the performance of different job scheduling strategies illustrate the flexibility or our approach.
Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Materia
Social Networks
Friend Recommendation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/6797

id CONICETDig_5c7649afd2ffbc71796647bf299e67a9
oai_identifier_str oai:ri.conicet.gov.ar:11336/6797
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A programming interface and framework for developing recommendation algorithms on large-scale social networksCorbellini, AlejandroGodoy, Daniela LisMateos Diaz, Cristian MaximilianoZunino Suarez, Alejandro OctavioSchiaffino, Silvia NoemiSocial NetworksFriend Recommendationhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Friend recommendation algorithms in large-scale social networks such as Facebook or Twitter usually require the exploration of huge user graphs. In current solutions for parallelizing graph algorithms, the burden of dealing with distributed concerns falls on algorithm developers. In this paper, a simple yet powerful programming interface (API) to implement distributed graph traversal algorithms is presented. A case study on implementing a followee recommendation algorithm for Twitter using the API is described. This case study not only illustrates the simplicity offered by the API for developing algorithms, but also how different aspects of the distributed solutions can be treated and experimented without altering the algorithm code. Experiments evaluating the performance of different job scheduling strategies illustrate the flexibility or our approach.Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; ArgentinaSpringer2014-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6797Corbellini, Alejandro; Godoy, Daniela Lis; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; A programming interface and framework for developing recommendation algorithms on large-scale social networks; Springer; Lecture Notes In Computer Science; 8658; 9-2014; 67-740302-9743enginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-10166-8_6info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-10166-8_6info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:04:10Zoai:ri.conicet.gov.ar:11336/6797instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:04:11.311CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A programming interface and framework for developing recommendation algorithms on large-scale social networks
title A programming interface and framework for developing recommendation algorithms on large-scale social networks
spellingShingle A programming interface and framework for developing recommendation algorithms on large-scale social networks
Corbellini, Alejandro
Social Networks
Friend Recommendation
title_short A programming interface and framework for developing recommendation algorithms on large-scale social networks
title_full A programming interface and framework for developing recommendation algorithms on large-scale social networks
title_fullStr A programming interface and framework for developing recommendation algorithms on large-scale social networks
title_full_unstemmed A programming interface and framework for developing recommendation algorithms on large-scale social networks
title_sort A programming interface and framework for developing recommendation algorithms on large-scale social networks
dc.creator.none.fl_str_mv Corbellini, Alejandro
Godoy, Daniela Lis
Mateos Diaz, Cristian Maximiliano
Zunino Suarez, Alejandro Octavio
Schiaffino, Silvia Noemi
author Corbellini, Alejandro
author_facet Corbellini, Alejandro
Godoy, Daniela Lis
Mateos Diaz, Cristian Maximiliano
Zunino Suarez, Alejandro Octavio
Schiaffino, Silvia Noemi
author_role author
author2 Godoy, Daniela Lis
Mateos Diaz, Cristian Maximiliano
Zunino Suarez, Alejandro Octavio
Schiaffino, Silvia Noemi
author2_role author
author
author
author
dc.subject.none.fl_str_mv Social Networks
Friend Recommendation
topic Social Networks
Friend Recommendation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Friend recommendation algorithms in large-scale social networks such as Facebook or Twitter usually require the exploration of huge user graphs. In current solutions for parallelizing graph algorithms, the burden of dealing with distributed concerns falls on algorithm developers. In this paper, a simple yet powerful programming interface (API) to implement distributed graph traversal algorithms is presented. A case study on implementing a followee recommendation algorithm for Twitter using the API is described. This case study not only illustrates the simplicity offered by the API for developing algorithms, but also how different aspects of the distributed solutions can be treated and experimented without altering the algorithm code. Experiments evaluating the performance of different job scheduling strategies illustrate the flexibility or our approach.
Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Mateos Diaz, Cristian Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tandil. Instituto Superior de Ingenieria del Software; Argentina
description Friend recommendation algorithms in large-scale social networks such as Facebook or Twitter usually require the exploration of huge user graphs. In current solutions for parallelizing graph algorithms, the burden of dealing with distributed concerns falls on algorithm developers. In this paper, a simple yet powerful programming interface (API) to implement distributed graph traversal algorithms is presented. A case study on implementing a followee recommendation algorithm for Twitter using the API is described. This case study not only illustrates the simplicity offered by the API for developing algorithms, but also how different aspects of the distributed solutions can be treated and experimented without altering the algorithm code. Experiments evaluating the performance of different job scheduling strategies illustrate the flexibility or our approach.
publishDate 2014
dc.date.none.fl_str_mv 2014-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/6797
Corbellini, Alejandro; Godoy, Daniela Lis; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; A programming interface and framework for developing recommendation algorithms on large-scale social networks; Springer; Lecture Notes In Computer Science; 8658; 9-2014; 67-74
0302-9743
url http://hdl.handle.net/11336/6797
identifier_str_mv Corbellini, Alejandro; Godoy, Daniela Lis; Mateos Diaz, Cristian Maximiliano; Zunino Suarez, Alejandro Octavio; Schiaffino, Silvia Noemi; A programming interface and framework for developing recommendation algorithms on large-scale social networks; Springer; Lecture Notes In Computer Science; 8658; 9-2014; 67-74
0302-9743
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/chapter/10.1007%2F978-3-319-10166-8_6
info:eu-repo/semantics/altIdentifier/doi/10.1007/978-3-319-10166-8_6
info:eu-repo/semantics/altIdentifier/doi/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980133386846208
score 12.993085