Personality-aware followee recommendation algorithms: An empirical analysis

Autores
Tommasel, Antonela; Corbellini, Alejandro; Godoy, Daniela Lis; Schiaffino, Silvia Noemi
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
As the popularity of micro-blogging sites, expressed as the number of active users and volume of online activities, increases, the difficulty of deciding who to follow also increases. Such decision might not depend on a unique factor as users usually have several reasons for choosing whom to follow. However, most recommendation systems almost exclusively rely on only two traditional factors: graph topology and user-generated content, disregarding the effect of psychological and behavioural characteristics, such as personality, over the followee selection process. Due to its effect over people's reactions and interactions with other individuals, personality is considered as one of the primary factors that influence human behaviour. This study aims at assessing the impact of personality in the accurate prediction of followees, beyond simple topological and content-based factors. It analyses whether user personality could condition followee selection by combining personality traits with the most commonly used followee predictive factors. Results showed that an accurate appreciation of such predictive factors tied to a quantitative analysis of personality is crucial for guiding the search of potential followees, and thus, enhance recommendations.
Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Materia
Followee Recommendation
Human Aspects Recommendation
Personality Traits
Twitter
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58470

id CONICETDig_6a6d9eff52fc68bfc6dc278af9e51d8c
oai_identifier_str oai:ri.conicet.gov.ar:11336/58470
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Personality-aware followee recommendation algorithms: An empirical analysisTommasel, AntonelaCorbellini, AlejandroGodoy, Daniela LisSchiaffino, Silvia NoemiFollowee RecommendationHuman Aspects RecommendationPersonality TraitsTwitterhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1As the popularity of micro-blogging sites, expressed as the number of active users and volume of online activities, increases, the difficulty of deciding who to follow also increases. Such decision might not depend on a unique factor as users usually have several reasons for choosing whom to follow. However, most recommendation systems almost exclusively rely on only two traditional factors: graph topology and user-generated content, disregarding the effect of psychological and behavioural characteristics, such as personality, over the followee selection process. Due to its effect over people's reactions and interactions with other individuals, personality is considered as one of the primary factors that influence human behaviour. This study aims at assessing the impact of personality in the accurate prediction of followees, beyond simple topological and content-based factors. It analyses whether user personality could condition followee selection by combining personality traits with the most commonly used followee predictive factors. Results showed that an accurate appreciation of such predictive factors tied to a quantitative analysis of personality is crucial for guiding the search of potential followees, and thus, enhance recommendations.Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaPergamon-Elsevier Science Ltd2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58470Tommasel, Antonela; Corbellini, Alejandro; Godoy, Daniela Lis; Schiaffino, Silvia Noemi; Personality-aware followee recommendation algorithms: An empirical analysis; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 51; 5-2016; 24-360952-1976CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0952197616000208info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engappai.2016.01.016info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:30Zoai:ri.conicet.gov.ar:11336/58470instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:30.441CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Personality-aware followee recommendation algorithms: An empirical analysis
title Personality-aware followee recommendation algorithms: An empirical analysis
spellingShingle Personality-aware followee recommendation algorithms: An empirical analysis
Tommasel, Antonela
Followee Recommendation
Human Aspects Recommendation
Personality Traits
Twitter
title_short Personality-aware followee recommendation algorithms: An empirical analysis
title_full Personality-aware followee recommendation algorithms: An empirical analysis
title_fullStr Personality-aware followee recommendation algorithms: An empirical analysis
title_full_unstemmed Personality-aware followee recommendation algorithms: An empirical analysis
title_sort Personality-aware followee recommendation algorithms: An empirical analysis
dc.creator.none.fl_str_mv Tommasel, Antonela
Corbellini, Alejandro
Godoy, Daniela Lis
Schiaffino, Silvia Noemi
author Tommasel, Antonela
author_facet Tommasel, Antonela
Corbellini, Alejandro
Godoy, Daniela Lis
Schiaffino, Silvia Noemi
author_role author
author2 Corbellini, Alejandro
Godoy, Daniela Lis
Schiaffino, Silvia Noemi
author2_role author
author
author
dc.subject.none.fl_str_mv Followee Recommendation
Human Aspects Recommendation
Personality Traits
Twitter
topic Followee Recommendation
Human Aspects Recommendation
Personality Traits
Twitter
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv As the popularity of micro-blogging sites, expressed as the number of active users and volume of online activities, increases, the difficulty of deciding who to follow also increases. Such decision might not depend on a unique factor as users usually have several reasons for choosing whom to follow. However, most recommendation systems almost exclusively rely on only two traditional factors: graph topology and user-generated content, disregarding the effect of psychological and behavioural characteristics, such as personality, over the followee selection process. Due to its effect over people's reactions and interactions with other individuals, personality is considered as one of the primary factors that influence human behaviour. This study aims at assessing the impact of personality in the accurate prediction of followees, beyond simple topological and content-based factors. It analyses whether user personality could condition followee selection by combining personality traits with the most commonly used followee predictive factors. Results showed that an accurate appreciation of such predictive factors tied to a quantitative analysis of personality is crucial for guiding the search of potential followees, and thus, enhance recommendations.
Fil: Tommasel, Antonela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Corbellini, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Godoy, Daniela Lis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Schiaffino, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
description As the popularity of micro-blogging sites, expressed as the number of active users and volume of online activities, increases, the difficulty of deciding who to follow also increases. Such decision might not depend on a unique factor as users usually have several reasons for choosing whom to follow. However, most recommendation systems almost exclusively rely on only two traditional factors: graph topology and user-generated content, disregarding the effect of psychological and behavioural characteristics, such as personality, over the followee selection process. Due to its effect over people's reactions and interactions with other individuals, personality is considered as one of the primary factors that influence human behaviour. This study aims at assessing the impact of personality in the accurate prediction of followees, beyond simple topological and content-based factors. It analyses whether user personality could condition followee selection by combining personality traits with the most commonly used followee predictive factors. Results showed that an accurate appreciation of such predictive factors tied to a quantitative analysis of personality is crucial for guiding the search of potential followees, and thus, enhance recommendations.
publishDate 2016
dc.date.none.fl_str_mv 2016-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58470
Tommasel, Antonela; Corbellini, Alejandro; Godoy, Daniela Lis; Schiaffino, Silvia Noemi; Personality-aware followee recommendation algorithms: An empirical analysis; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 51; 5-2016; 24-36
0952-1976
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58470
identifier_str_mv Tommasel, Antonela; Corbellini, Alejandro; Godoy, Daniela Lis; Schiaffino, Silvia Noemi; Personality-aware followee recommendation algorithms: An empirical analysis; Pergamon-Elsevier Science Ltd; Engineering Applications Of Artificial Intelligence; 51; 5-2016; 24-36
0952-1976
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0952197616000208
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.engappai.2016.01.016
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268863708790784
score 13.13397