Nonconvergence of the Wang-Landau algorithms with multiple random walkers
- Autores
- Belardinelli, Rolando Elio; Pereyra, Victor Daniel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper discusses some convergence properties in the entropic sampling Monte Carlo methods with multiple random walkers, particularly in the Wang-Landau (WL) and 1/t algorithms. The classical algorithms are modified by the use of m-independent random walkers in the energy landscape to calculate the density of states (DOS). The Ising model is used to show the convergence properties in the calculation of the DOS, as well as the critical temperature, while the calculation of the number π by multiple dimensional integration is used in the continuum approximation. In each case, the error is obtained separately for each walker at a fixed time, t; then, the average over m walkers is performed. It is observed that the error goes as 1/m. However, if the number of walkers increases above a certain critical value m>mx, the error reaches a constant value (i.e., it saturates). This occurs for both algorithms; however, it is shown that for a given system, the 1/t algorithm is more efficient and accurate than the similar version of the WL algorithm. It follows that it makes no sense to increase the number of walkers above a critical value mx, since it does not reduce the error in the calculation. Therefore, the number of walkers does not guarantee convergence.
Fil: Belardinelli, Rolando Elio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina
Fil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina - Materia
-
Monte Carlo
Entropic Sampling
Simulation
Algorithm - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60420
Ver los metadatos del registro completo
id |
CONICETDig_11b790f6e8b832ee020abdc4bc054bbf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60420 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Nonconvergence of the Wang-Landau algorithms with multiple random walkersBelardinelli, Rolando ElioPereyra, Victor DanielMonte CarloEntropic SamplingSimulationAlgorithmhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1This paper discusses some convergence properties in the entropic sampling Monte Carlo methods with multiple random walkers, particularly in the Wang-Landau (WL) and 1/t algorithms. The classical algorithms are modified by the use of m-independent random walkers in the energy landscape to calculate the density of states (DOS). The Ising model is used to show the convergence properties in the calculation of the DOS, as well as the critical temperature, while the calculation of the number π by multiple dimensional integration is used in the continuum approximation. In each case, the error is obtained separately for each walker at a fixed time, t; then, the average over m walkers is performed. It is observed that the error goes as 1/m. However, if the number of walkers increases above a certain critical value m>mx, the error reaches a constant value (i.e., it saturates). This occurs for both algorithms; however, it is shown that for a given system, the 1/t algorithm is more efficient and accurate than the similar version of the WL algorithm. It follows that it makes no sense to increase the number of walkers above a critical value mx, since it does not reduce the error in the calculation. Therefore, the number of walkers does not guarantee convergence.Fil: Belardinelli, Rolando Elio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; ArgentinaFil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; ArgentinaAmerican Physical Society2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60420Belardinelli, Rolando Elio; Pereyra, Victor Daniel; Nonconvergence of the Wang-Landau algorithms with multiple random walkers; American Physical Society; Physical Review E; 93; 5; 5-2016; 1-9; 0533062470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.053306info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.053306info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:06:16Zoai:ri.conicet.gov.ar:11336/60420instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:06:17.044CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Nonconvergence of the Wang-Landau algorithms with multiple random walkers |
title |
Nonconvergence of the Wang-Landau algorithms with multiple random walkers |
spellingShingle |
Nonconvergence of the Wang-Landau algorithms with multiple random walkers Belardinelli, Rolando Elio Monte Carlo Entropic Sampling Simulation Algorithm |
title_short |
Nonconvergence of the Wang-Landau algorithms with multiple random walkers |
title_full |
Nonconvergence of the Wang-Landau algorithms with multiple random walkers |
title_fullStr |
Nonconvergence of the Wang-Landau algorithms with multiple random walkers |
title_full_unstemmed |
Nonconvergence of the Wang-Landau algorithms with multiple random walkers |
title_sort |
Nonconvergence of the Wang-Landau algorithms with multiple random walkers |
dc.creator.none.fl_str_mv |
Belardinelli, Rolando Elio Pereyra, Victor Daniel |
author |
Belardinelli, Rolando Elio |
author_facet |
Belardinelli, Rolando Elio Pereyra, Victor Daniel |
author_role |
author |
author2 |
Pereyra, Victor Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Monte Carlo Entropic Sampling Simulation Algorithm |
topic |
Monte Carlo Entropic Sampling Simulation Algorithm |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This paper discusses some convergence properties in the entropic sampling Monte Carlo methods with multiple random walkers, particularly in the Wang-Landau (WL) and 1/t algorithms. The classical algorithms are modified by the use of m-independent random walkers in the energy landscape to calculate the density of states (DOS). The Ising model is used to show the convergence properties in the calculation of the DOS, as well as the critical temperature, while the calculation of the number π by multiple dimensional integration is used in the continuum approximation. In each case, the error is obtained separately for each walker at a fixed time, t; then, the average over m walkers is performed. It is observed that the error goes as 1/m. However, if the number of walkers increases above a certain critical value m>mx, the error reaches a constant value (i.e., it saturates). This occurs for both algorithms; however, it is shown that for a given system, the 1/t algorithm is more efficient and accurate than the similar version of the WL algorithm. It follows that it makes no sense to increase the number of walkers above a critical value mx, since it does not reduce the error in the calculation. Therefore, the number of walkers does not guarantee convergence. Fil: Belardinelli, Rolando Elio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina Fil: Pereyra, Victor Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Física Aplicada ; Argentina |
description |
This paper discusses some convergence properties in the entropic sampling Monte Carlo methods with multiple random walkers, particularly in the Wang-Landau (WL) and 1/t algorithms. The classical algorithms are modified by the use of m-independent random walkers in the energy landscape to calculate the density of states (DOS). The Ising model is used to show the convergence properties in the calculation of the DOS, as well as the critical temperature, while the calculation of the number π by multiple dimensional integration is used in the continuum approximation. In each case, the error is obtained separately for each walker at a fixed time, t; then, the average over m walkers is performed. It is observed that the error goes as 1/m. However, if the number of walkers increases above a certain critical value m>mx, the error reaches a constant value (i.e., it saturates). This occurs for both algorithms; however, it is shown that for a given system, the 1/t algorithm is more efficient and accurate than the similar version of the WL algorithm. It follows that it makes no sense to increase the number of walkers above a critical value mx, since it does not reduce the error in the calculation. Therefore, the number of walkers does not guarantee convergence. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60420 Belardinelli, Rolando Elio; Pereyra, Victor Daniel; Nonconvergence of the Wang-Landau algorithms with multiple random walkers; American Physical Society; Physical Review E; 93; 5; 5-2016; 1-9; 053306 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60420 |
identifier_str_mv |
Belardinelli, Rolando Elio; Pereyra, Victor Daniel; Nonconvergence of the Wang-Landau algorithms with multiple random walkers; American Physical Society; Physical Review E; 93; 5; 5-2016; 1-9; 053306 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.93.053306 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.93.053306 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269951078957056 |
score |
13.13397 |