Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation

Autores
Castro, Mario; Baltazar, Samuel E.; Rojas Nunez, Javier; Bringa, Eduardo Marcial; Valencia, Felipe J.; Allende, Sebastian
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The mechanical and magnetic properties of polycrystalline nanoframes were investigated using atomistic molecular dynamics and micromagnetic simulations. The magneto-mechanical response of Fe hollow-like nanocubes was addressed by uniaxial compression carried out by nanoindentation. Our results show that the deformation of a nanoframe is dominated at lower strains by the compression of the nanostructure due to filament bending. This leads to the nanoframe twisting perpendicular to the indentation direction for larger indentation depths. Bending and twisting reduce stress concentration and, at the same time, increase coercivity. This unexpected increase of the coercivity occurs because the mechanical deformation changes the cubic shape of the nanoframe, which in turn drives the system to more stable magnetic states. A coercivity increase of almost 100 mT is found for strains close to 0.03, which are within the elastic regime of the Fe nanoframe. Coercivity then decreases at larger strains. However, in all cases, the coercivity is higher than for the undeformed nanoframe. These results can help in the design of new magnetic devices where mechanical deformation can be used as a primary tool to tailor the magnetic response on nanoscale solids.
Fil: Castro, Mario. Universidad de Santiago de Chile; Chile
Fil: Baltazar, Samuel E.. Universidad de Santiago de Chile; Chile
Fil: Rojas Nunez, Javier. Universidad de Santiago de Chile; Chile
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Valencia, Felipe J.. Universidad Catolica de Maule; Chile
Fil: Allende, Sebastian. Universidad de Santiago de Chile; Chile
Materia
MAGNETIC FRAME
MOLECULAR DYNAMICS
MICROMAGNETISM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/239281

id CONICETDig_bdf2cb35a4ad4a064d2e618982084914
oai_identifier_str oai:ri.conicet.gov.ar:11336/239281
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformationCastro, MarioBaltazar, Samuel E.Rojas Nunez, JavierBringa, Eduardo MarcialValencia, Felipe J.Allende, SebastianMAGNETIC FRAMEMOLECULAR DYNAMICSMICROMAGNETISMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The mechanical and magnetic properties of polycrystalline nanoframes were investigated using atomistic molecular dynamics and micromagnetic simulations. The magneto-mechanical response of Fe hollow-like nanocubes was addressed by uniaxial compression carried out by nanoindentation. Our results show that the deformation of a nanoframe is dominated at lower strains by the compression of the nanostructure due to filament bending. This leads to the nanoframe twisting perpendicular to the indentation direction for larger indentation depths. Bending and twisting reduce stress concentration and, at the same time, increase coercivity. This unexpected increase of the coercivity occurs because the mechanical deformation changes the cubic shape of the nanoframe, which in turn drives the system to more stable magnetic states. A coercivity increase of almost 100 mT is found for strains close to 0.03, which are within the elastic regime of the Fe nanoframe. Coercivity then decreases at larger strains. However, in all cases, the coercivity is higher than for the undeformed nanoframe. These results can help in the design of new magnetic devices where mechanical deformation can be used as a primary tool to tailor the magnetic response on nanoscale solids.Fil: Castro, Mario. Universidad de Santiago de Chile; ChileFil: Baltazar, Samuel E.. Universidad de Santiago de Chile; ChileFil: Rojas Nunez, Javier. Universidad de Santiago de Chile; ChileFil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Valencia, Felipe J.. Universidad Catolica de Maule; ChileFil: Allende, Sebastian. Universidad de Santiago de Chile; ChileNature2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239281Castro, Mario; Baltazar, Samuel E.; Rojas Nunez, Javier; Bringa, Eduardo Marcial; Valencia, Felipe J.; et al.; Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation; Nature; Scientific Reports; 12; 1; 4-2022; 1-92045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-022-09647-2info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-09647-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:54Zoai:ri.conicet.gov.ar:11336/239281instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:54.71CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation
title Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation
spellingShingle Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation
Castro, Mario
MAGNETIC FRAME
MOLECULAR DYNAMICS
MICROMAGNETISM
title_short Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation
title_full Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation
title_fullStr Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation
title_full_unstemmed Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation
title_sort Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation
dc.creator.none.fl_str_mv Castro, Mario
Baltazar, Samuel E.
Rojas Nunez, Javier
Bringa, Eduardo Marcial
Valencia, Felipe J.
Allende, Sebastian
author Castro, Mario
author_facet Castro, Mario
Baltazar, Samuel E.
Rojas Nunez, Javier
Bringa, Eduardo Marcial
Valencia, Felipe J.
Allende, Sebastian
author_role author
author2 Baltazar, Samuel E.
Rojas Nunez, Javier
Bringa, Eduardo Marcial
Valencia, Felipe J.
Allende, Sebastian
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv MAGNETIC FRAME
MOLECULAR DYNAMICS
MICROMAGNETISM
topic MAGNETIC FRAME
MOLECULAR DYNAMICS
MICROMAGNETISM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The mechanical and magnetic properties of polycrystalline nanoframes were investigated using atomistic molecular dynamics and micromagnetic simulations. The magneto-mechanical response of Fe hollow-like nanocubes was addressed by uniaxial compression carried out by nanoindentation. Our results show that the deformation of a nanoframe is dominated at lower strains by the compression of the nanostructure due to filament bending. This leads to the nanoframe twisting perpendicular to the indentation direction for larger indentation depths. Bending and twisting reduce stress concentration and, at the same time, increase coercivity. This unexpected increase of the coercivity occurs because the mechanical deformation changes the cubic shape of the nanoframe, which in turn drives the system to more stable magnetic states. A coercivity increase of almost 100 mT is found for strains close to 0.03, which are within the elastic regime of the Fe nanoframe. Coercivity then decreases at larger strains. However, in all cases, the coercivity is higher than for the undeformed nanoframe. These results can help in the design of new magnetic devices where mechanical deformation can be used as a primary tool to tailor the magnetic response on nanoscale solids.
Fil: Castro, Mario. Universidad de Santiago de Chile; Chile
Fil: Baltazar, Samuel E.. Universidad de Santiago de Chile; Chile
Fil: Rojas Nunez, Javier. Universidad de Santiago de Chile; Chile
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Valencia, Felipe J.. Universidad Catolica de Maule; Chile
Fil: Allende, Sebastian. Universidad de Santiago de Chile; Chile
description The mechanical and magnetic properties of polycrystalline nanoframes were investigated using atomistic molecular dynamics and micromagnetic simulations. The magneto-mechanical response of Fe hollow-like nanocubes was addressed by uniaxial compression carried out by nanoindentation. Our results show that the deformation of a nanoframe is dominated at lower strains by the compression of the nanostructure due to filament bending. This leads to the nanoframe twisting perpendicular to the indentation direction for larger indentation depths. Bending and twisting reduce stress concentration and, at the same time, increase coercivity. This unexpected increase of the coercivity occurs because the mechanical deformation changes the cubic shape of the nanoframe, which in turn drives the system to more stable magnetic states. A coercivity increase of almost 100 mT is found for strains close to 0.03, which are within the elastic regime of the Fe nanoframe. Coercivity then decreases at larger strains. However, in all cases, the coercivity is higher than for the undeformed nanoframe. These results can help in the design of new magnetic devices where mechanical deformation can be used as a primary tool to tailor the magnetic response on nanoscale solids.
publishDate 2022
dc.date.none.fl_str_mv 2022-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/239281
Castro, Mario; Baltazar, Samuel E.; Rojas Nunez, Javier; Bringa, Eduardo Marcial; Valencia, Felipe J.; et al.; Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation; Nature; Scientific Reports; 12; 1; 4-2022; 1-9
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/239281
identifier_str_mv Castro, Mario; Baltazar, Samuel E.; Rojas Nunez, Javier; Bringa, Eduardo Marcial; Valencia, Felipe J.; et al.; Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation; Nature; Scientific Reports; 12; 1; 4-2022; 1-9
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-022-09647-2
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-09647-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature
publisher.none.fl_str_mv Nature
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270098610454528
score 13.13397