Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation
- Autores
- Castro, Mario; Baltazar, Samuel E.; Rojas Nunez, Javier; Bringa, Eduardo Marcial; Valencia, Felipe J.; Allende, Sebastian
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The mechanical and magnetic properties of polycrystalline nanoframes were investigated using atomistic molecular dynamics and micromagnetic simulations. The magneto-mechanical response of Fe hollow-like nanocubes was addressed by uniaxial compression carried out by nanoindentation. Our results show that the deformation of a nanoframe is dominated at lower strains by the compression of the nanostructure due to filament bending. This leads to the nanoframe twisting perpendicular to the indentation direction for larger indentation depths. Bending and twisting reduce stress concentration and, at the same time, increase coercivity. This unexpected increase of the coercivity occurs because the mechanical deformation changes the cubic shape of the nanoframe, which in turn drives the system to more stable magnetic states. A coercivity increase of almost 100 mT is found for strains close to 0.03, which are within the elastic regime of the Fe nanoframe. Coercivity then decreases at larger strains. However, in all cases, the coercivity is higher than for the undeformed nanoframe. These results can help in the design of new magnetic devices where mechanical deformation can be used as a primary tool to tailor the magnetic response on nanoscale solids.
Fil: Castro, Mario. Universidad de Santiago de Chile; Chile
Fil: Baltazar, Samuel E.. Universidad de Santiago de Chile; Chile
Fil: Rojas Nunez, Javier. Universidad de Santiago de Chile; Chile
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Valencia, Felipe J.. Universidad Catolica de Maule; Chile
Fil: Allende, Sebastian. Universidad de Santiago de Chile; Chile - Materia
-
MAGNETIC FRAME
MOLECULAR DYNAMICS
MICROMAGNETISM - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/239281
Ver los metadatos del registro completo
id |
CONICETDig_bdf2cb35a4ad4a064d2e618982084914 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/239281 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformationCastro, MarioBaltazar, Samuel E.Rojas Nunez, JavierBringa, Eduardo MarcialValencia, Felipe J.Allende, SebastianMAGNETIC FRAMEMOLECULAR DYNAMICSMICROMAGNETISMhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The mechanical and magnetic properties of polycrystalline nanoframes were investigated using atomistic molecular dynamics and micromagnetic simulations. The magneto-mechanical response of Fe hollow-like nanocubes was addressed by uniaxial compression carried out by nanoindentation. Our results show that the deformation of a nanoframe is dominated at lower strains by the compression of the nanostructure due to filament bending. This leads to the nanoframe twisting perpendicular to the indentation direction for larger indentation depths. Bending and twisting reduce stress concentration and, at the same time, increase coercivity. This unexpected increase of the coercivity occurs because the mechanical deformation changes the cubic shape of the nanoframe, which in turn drives the system to more stable magnetic states. A coercivity increase of almost 100 mT is found for strains close to 0.03, which are within the elastic regime of the Fe nanoframe. Coercivity then decreases at larger strains. However, in all cases, the coercivity is higher than for the undeformed nanoframe. These results can help in the design of new magnetic devices where mechanical deformation can be used as a primary tool to tailor the magnetic response on nanoscale solids.Fil: Castro, Mario. Universidad de Santiago de Chile; ChileFil: Baltazar, Samuel E.. Universidad de Santiago de Chile; ChileFil: Rojas Nunez, Javier. Universidad de Santiago de Chile; ChileFil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Valencia, Felipe J.. Universidad Catolica de Maule; ChileFil: Allende, Sebastian. Universidad de Santiago de Chile; ChileNature2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239281Castro, Mario; Baltazar, Samuel E.; Rojas Nunez, Javier; Bringa, Eduardo Marcial; Valencia, Felipe J.; et al.; Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation; Nature; Scientific Reports; 12; 1; 4-2022; 1-92045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-022-09647-2info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-09647-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:09:54Zoai:ri.conicet.gov.ar:11336/239281instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:09:54.71CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation |
title |
Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation |
spellingShingle |
Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation Castro, Mario MAGNETIC FRAME MOLECULAR DYNAMICS MICROMAGNETISM |
title_short |
Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation |
title_full |
Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation |
title_fullStr |
Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation |
title_full_unstemmed |
Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation |
title_sort |
Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation |
dc.creator.none.fl_str_mv |
Castro, Mario Baltazar, Samuel E. Rojas Nunez, Javier Bringa, Eduardo Marcial Valencia, Felipe J. Allende, Sebastian |
author |
Castro, Mario |
author_facet |
Castro, Mario Baltazar, Samuel E. Rojas Nunez, Javier Bringa, Eduardo Marcial Valencia, Felipe J. Allende, Sebastian |
author_role |
author |
author2 |
Baltazar, Samuel E. Rojas Nunez, Javier Bringa, Eduardo Marcial Valencia, Felipe J. Allende, Sebastian |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
MAGNETIC FRAME MOLECULAR DYNAMICS MICROMAGNETISM |
topic |
MAGNETIC FRAME MOLECULAR DYNAMICS MICROMAGNETISM |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The mechanical and magnetic properties of polycrystalline nanoframes were investigated using atomistic molecular dynamics and micromagnetic simulations. The magneto-mechanical response of Fe hollow-like nanocubes was addressed by uniaxial compression carried out by nanoindentation. Our results show that the deformation of a nanoframe is dominated at lower strains by the compression of the nanostructure due to filament bending. This leads to the nanoframe twisting perpendicular to the indentation direction for larger indentation depths. Bending and twisting reduce stress concentration and, at the same time, increase coercivity. This unexpected increase of the coercivity occurs because the mechanical deformation changes the cubic shape of the nanoframe, which in turn drives the system to more stable magnetic states. A coercivity increase of almost 100 mT is found for strains close to 0.03, which are within the elastic regime of the Fe nanoframe. Coercivity then decreases at larger strains. However, in all cases, the coercivity is higher than for the undeformed nanoframe. These results can help in the design of new magnetic devices where mechanical deformation can be used as a primary tool to tailor the magnetic response on nanoscale solids. Fil: Castro, Mario. Universidad de Santiago de Chile; Chile Fil: Baltazar, Samuel E.. Universidad de Santiago de Chile; Chile Fil: Rojas Nunez, Javier. Universidad de Santiago de Chile; Chile Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Valencia, Felipe J.. Universidad Catolica de Maule; Chile Fil: Allende, Sebastian. Universidad de Santiago de Chile; Chile |
description |
The mechanical and magnetic properties of polycrystalline nanoframes were investigated using atomistic molecular dynamics and micromagnetic simulations. The magneto-mechanical response of Fe hollow-like nanocubes was addressed by uniaxial compression carried out by nanoindentation. Our results show that the deformation of a nanoframe is dominated at lower strains by the compression of the nanostructure due to filament bending. This leads to the nanoframe twisting perpendicular to the indentation direction for larger indentation depths. Bending and twisting reduce stress concentration and, at the same time, increase coercivity. This unexpected increase of the coercivity occurs because the mechanical deformation changes the cubic shape of the nanoframe, which in turn drives the system to more stable magnetic states. A coercivity increase of almost 100 mT is found for strains close to 0.03, which are within the elastic regime of the Fe nanoframe. Coercivity then decreases at larger strains. However, in all cases, the coercivity is higher than for the undeformed nanoframe. These results can help in the design of new magnetic devices where mechanical deformation can be used as a primary tool to tailor the magnetic response on nanoscale solids. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/239281 Castro, Mario; Baltazar, Samuel E.; Rojas Nunez, Javier; Bringa, Eduardo Marcial; Valencia, Felipe J.; et al.; Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation; Nature; Scientific Reports; 12; 1; 4-2022; 1-9 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/239281 |
identifier_str_mv |
Castro, Mario; Baltazar, Samuel E.; Rojas Nunez, Javier; Bringa, Eduardo Marcial; Valencia, Felipe J.; et al.; Enhancing the magnetic response on polycrystalline nanoframes through mechanical deformation; Nature; Scientific Reports; 12; 1; 4-2022; 1-9 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-022-09647-2 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-022-09647-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature |
publisher.none.fl_str_mv |
Nature |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270098610454528 |
score |
13.13397 |