The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic
- Autores
- Ordoñez, Omar Federico; Zannier, Federico; Albarracín, Virginia Helena; Farias, Maria Eugenia
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The high-altitude Andean Lakes (HAAL) areecosystems located in the South American Andes. These ecosystems are unique dueto their geographical characteristics, their broad range of extremeenvironments, as well their abundant biodiversity. Thegenus Exiguobacteriumis one of the most widespread and representative genera on the HAAL, beingdetected by direct (pure culture isolation) and indirect (DGGE) techniques. Thisgenera have been isolated or molecularly detected from a wide range of habitatsincluding cold and hot environments with temperature between-12 and 55°C. This fact confers substantial interest to the genus as apotential model system to research attributes that may correlate withadaptation and evolution of organisms to diverse thermalregimes. Exiguobacterium sp. S17 is a high arsenic resistantpolyextremophilic bacteria isolated from the stromatolites of L. Socompa. This strain is able to grow readily in laboratory and represents an attractive model system for the study of environmentalstress. Previous studies showed that Exiguobacterium sp. S17 is able to resistto high arsenic concentration and to produce biofilm. The aim of this work was toassess biofilms formation byExiguobacterium sp. S17 in different synthetic supports and to investigatethe influence of arsenic (As[III] y As[V]) in their development.Determination andquantification of biofilms was measured using crystal violet 1% following themethodology proposed by Tomaras et al., (2003). Biofilms production wasevaluated at different incubation times (24, 48 and 72 h) in LB50media (without As) and in different synthetic supports: sterile glass tubes (15x 125mm) and polypropylene (12 x 75 mm) and polystyrene plates (20 cm3).The influence of As was investigated supplemented LB50 with arsenate(As[V]): 50mM, 100 mM, 150 mM, 200mM, 250mM and arsenite (As[III]): 2.5 mM,5mM, 7.5 mM, 10 mM, 12.5 mM at the same time.ANOVA analyzes revealed that the optimal production of biofilms isachieved after 24 hours of growth and the highest biofilm production wasobtained when using glass as support and adding arsenate (As [V]100 mM). No significant differences were observed when adding arsenite in comparison tocontrol medium (without arsenic).The findings obtained in this work made an important contribution to theknowledge of the biology and ecology of the microbial communities of the HAALin response to stress factors. Moreover, this method can be applied for thebenefit of human and environmental health by establishing an experimental basisfor a bioremediation method. Furthermore, we propose that HAAL is a source of novelbacterial species of biotechnological interest.
Fil: Ordoñez, Omar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Zannier, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Albarracín, Virginia Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
Fil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina
XI Congreso argentino de Microbiología General
Cordoba
Argentina
Sociedad Argentina de Microbiología General - Materia
-
Arsenic resistance
Exiguobacterium
Biofilms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/189491
Ver los metadatos del registro completo
id |
CONICETDig_bde7f66ba949aaf7e4a2fc3fe5a85120 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/189491 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenicOrdoñez, Omar FedericoZannier, FedericoAlbarracín, Virginia HelenaFarias, Maria EugeniaArsenic resistanceExiguobacteriumBiofilmshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1The high-altitude Andean Lakes (HAAL) areecosystems located in the South American Andes. These ecosystems are unique dueto their geographical characteristics, their broad range of extremeenvironments, as well their abundant biodiversity. Thegenus Exiguobacteriumis one of the most widespread and representative genera on the HAAL, beingdetected by direct (pure culture isolation) and indirect (DGGE) techniques. Thisgenera have been isolated or molecularly detected from a wide range of habitatsincluding cold and hot environments with temperature between-12 and 55°C. This fact confers substantial interest to the genus as apotential model system to research attributes that may correlate withadaptation and evolution of organisms to diverse thermalregimes. Exiguobacterium sp. S17 is a high arsenic resistantpolyextremophilic bacteria isolated from the stromatolites of L. Socompa. This strain is able to grow readily in laboratory and represents an attractive model system for the study of environmentalstress. Previous studies showed that Exiguobacterium sp. S17 is able to resistto high arsenic concentration and to produce biofilm. The aim of this work was toassess biofilms formation byExiguobacterium sp. S17 in different synthetic supports and to investigatethe influence of arsenic (As[III] y As[V]) in their development.Determination andquantification of biofilms was measured using crystal violet 1% following themethodology proposed by Tomaras et al., (2003). Biofilms production wasevaluated at different incubation times (24, 48 and 72 h) in LB50media (without As) and in different synthetic supports: sterile glass tubes (15x 125mm) and polypropylene (12 x 75 mm) and polystyrene plates (20 cm3).The influence of As was investigated supplemented LB50 with arsenate(As[V]): 50mM, 100 mM, 150 mM, 200mM, 250mM and arsenite (As[III]): 2.5 mM,5mM, 7.5 mM, 10 mM, 12.5 mM at the same time.ANOVA analyzes revealed that the optimal production of biofilms isachieved after 24 hours of growth and the highest biofilm production wasobtained when using glass as support and adding arsenate (As [V]100 mM). No significant differences were observed when adding arsenite in comparison tocontrol medium (without arsenic).The findings obtained in this work made an important contribution to theknowledge of the biology and ecology of the microbial communities of the HAALin response to stress factors. Moreover, this method can be applied for thebenefit of human and environmental health by establishing an experimental basisfor a bioremediation method. Furthermore, we propose that HAAL is a source of novelbacterial species of biotechnological interest.Fil: Ordoñez, Omar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Zannier, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Albarracín, Virginia Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaFil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; ArgentinaXI Congreso argentino de Microbiología GeneralCordobaArgentinaSociedad Argentina de Microbiología GeneralSociedad Argentina de Microbiologia General2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/189491The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic; XI Congreso argentino de Microbiología General; Cordoba; Argentina; 2015; 1-2CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2022/10/Libro-SAMIGE-2015.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:28Zoai:ri.conicet.gov.ar:11336/189491instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:28.63CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic |
title |
The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic |
spellingShingle |
The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic Ordoñez, Omar Federico Arsenic resistance Exiguobacterium Biofilms |
title_short |
The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic |
title_full |
The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic |
title_fullStr |
The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic |
title_full_unstemmed |
The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic |
title_sort |
The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic |
dc.creator.none.fl_str_mv |
Ordoñez, Omar Federico Zannier, Federico Albarracín, Virginia Helena Farias, Maria Eugenia |
author |
Ordoñez, Omar Federico |
author_facet |
Ordoñez, Omar Federico Zannier, Federico Albarracín, Virginia Helena Farias, Maria Eugenia |
author_role |
author |
author2 |
Zannier, Federico Albarracín, Virginia Helena Farias, Maria Eugenia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Arsenic resistance Exiguobacterium Biofilms |
topic |
Arsenic resistance Exiguobacterium Biofilms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The high-altitude Andean Lakes (HAAL) areecosystems located in the South American Andes. These ecosystems are unique dueto their geographical characteristics, their broad range of extremeenvironments, as well their abundant biodiversity. Thegenus Exiguobacteriumis one of the most widespread and representative genera on the HAAL, beingdetected by direct (pure culture isolation) and indirect (DGGE) techniques. Thisgenera have been isolated or molecularly detected from a wide range of habitatsincluding cold and hot environments with temperature between-12 and 55°C. This fact confers substantial interest to the genus as apotential model system to research attributes that may correlate withadaptation and evolution of organisms to diverse thermalregimes. Exiguobacterium sp. S17 is a high arsenic resistantpolyextremophilic bacteria isolated from the stromatolites of L. Socompa. This strain is able to grow readily in laboratory and represents an attractive model system for the study of environmentalstress. Previous studies showed that Exiguobacterium sp. S17 is able to resistto high arsenic concentration and to produce biofilm. The aim of this work was toassess biofilms formation byExiguobacterium sp. S17 in different synthetic supports and to investigatethe influence of arsenic (As[III] y As[V]) in their development.Determination andquantification of biofilms was measured using crystal violet 1% following themethodology proposed by Tomaras et al., (2003). Biofilms production wasevaluated at different incubation times (24, 48 and 72 h) in LB50media (without As) and in different synthetic supports: sterile glass tubes (15x 125mm) and polypropylene (12 x 75 mm) and polystyrene plates (20 cm3).The influence of As was investigated supplemented LB50 with arsenate(As[V]): 50mM, 100 mM, 150 mM, 200mM, 250mM and arsenite (As[III]): 2.5 mM,5mM, 7.5 mM, 10 mM, 12.5 mM at the same time.ANOVA analyzes revealed that the optimal production of biofilms isachieved after 24 hours of growth and the highest biofilm production wasobtained when using glass as support and adding arsenate (As [V]100 mM). No significant differences were observed when adding arsenite in comparison tocontrol medium (without arsenic).The findings obtained in this work made an important contribution to theknowledge of the biology and ecology of the microbial communities of the HAALin response to stress factors. Moreover, this method can be applied for thebenefit of human and environmental health by establishing an experimental basisfor a bioremediation method. Furthermore, we propose that HAAL is a source of novelbacterial species of biotechnological interest. Fil: Ordoñez, Omar Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Zannier, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Albarracín, Virginia Helena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina Fil: Farias, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina XI Congreso argentino de Microbiología General Cordoba Argentina Sociedad Argentina de Microbiología General |
description |
The high-altitude Andean Lakes (HAAL) areecosystems located in the South American Andes. These ecosystems are unique dueto their geographical characteristics, their broad range of extremeenvironments, as well their abundant biodiversity. Thegenus Exiguobacteriumis one of the most widespread and representative genera on the HAAL, beingdetected by direct (pure culture isolation) and indirect (DGGE) techniques. Thisgenera have been isolated or molecularly detected from a wide range of habitatsincluding cold and hot environments with temperature between-12 and 55°C. This fact confers substantial interest to the genus as apotential model system to research attributes that may correlate withadaptation and evolution of organisms to diverse thermalregimes. Exiguobacterium sp. S17 is a high arsenic resistantpolyextremophilic bacteria isolated from the stromatolites of L. Socompa. This strain is able to grow readily in laboratory and represents an attractive model system for the study of environmentalstress. Previous studies showed that Exiguobacterium sp. S17 is able to resistto high arsenic concentration and to produce biofilm. The aim of this work was toassess biofilms formation byExiguobacterium sp. S17 in different synthetic supports and to investigatethe influence of arsenic (As[III] y As[V]) in their development.Determination andquantification of biofilms was measured using crystal violet 1% following themethodology proposed by Tomaras et al., (2003). Biofilms production wasevaluated at different incubation times (24, 48 and 72 h) in LB50media (without As) and in different synthetic supports: sterile glass tubes (15x 125mm) and polypropylene (12 x 75 mm) and polystyrene plates (20 cm3).The influence of As was investigated supplemented LB50 with arsenate(As[V]): 50mM, 100 mM, 150 mM, 200mM, 250mM and arsenite (As[III]): 2.5 mM,5mM, 7.5 mM, 10 mM, 12.5 mM at the same time.ANOVA analyzes revealed that the optimal production of biofilms isachieved after 24 hours of growth and the highest biofilm production wasobtained when using glass as support and adding arsenate (As [V]100 mM). No significant differences were observed when adding arsenite in comparison tocontrol medium (without arsenic).The findings obtained in this work made an important contribution to theknowledge of the biology and ecology of the microbial communities of the HAALin response to stress factors. Moreover, this method can be applied for thebenefit of human and environmental health by establishing an experimental basisfor a bioremediation method. Furthermore, we propose that HAAL is a source of novelbacterial species of biotechnological interest. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/189491 The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic; XI Congreso argentino de Microbiología General; Cordoba; Argentina; 2015; 1-2 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/189491 |
identifier_str_mv |
The biofilms formation of exiguobacterium sp. S17 on synthetic supports and under the influence of arsenic; XI Congreso argentino de Microbiología General; Cordoba; Argentina; 2015; 1-2 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2022/10/Libro-SAMIGE-2015.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Sociedad Argentina de Microbiologia General |
publisher.none.fl_str_mv |
Sociedad Argentina de Microbiologia General |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270046096719872 |
score |
13.13397 |