Molecular dynamics simulations of ramp-compressed copper
- Autores
- Higginbotham, A.; Hawreliak, J.; Bringa, Eduardo Marcial; Kimminau, G.; Park, N.; Reed, E.; Remington, B. A.; Wark, J. S.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The compression of solids by a ramped pressure pulse, as opposed to shock compression, affords the potential to create states of solid-state matter at pressures greater than those achievable in diamond anvil cells. A fundamental understanding of this process requires a knowledge of the loading conditions that discriminate between so-called quasi-isentropic (QI) conditions and those pertaining to the higher entropy states produced by shock loading. We present here molecular dynamics simulations of single-crystal copper deformed over a range of strain rates and demonstrate that QI states at high pressure and low temperature can be present even at strain rates in excess of 1012 s−1. These states survive long enough to be studied with novel ultrafast techniques, in principle allowing simple, compact, isentropic compression experiments. Our atomistic simulations, with up to 25 million atoms, simulated for ramp durations of up to 300 ps, show how plastic deformation and melting varies with strain rate.
Fil: Higginbotham, A.. University of Oxford. Department of Physics; Reino Unido
Fil: Hawreliak, J.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Kimminau, G.. University of Oxford. Department of Physics; Reino Unido
Fil: Park, N.. No especifíca;
Fil: Reed, E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Wark, J. S.. University of Oxford; Reino Unido - Materia
-
Molecular dynamics
ramp compression
copper - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/199494
Ver los metadatos del registro completo
id |
CONICETDig_bdb7f9f080506206c34568786f176d02 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/199494 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Molecular dynamics simulations of ramp-compressed copperHigginbotham, A.Hawreliak, J.Bringa, Eduardo MarcialKimminau, G.Park, N.Reed, E.Remington, B. A.Wark, J. S.Molecular dynamicsramp compressioncopperhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The compression of solids by a ramped pressure pulse, as opposed to shock compression, affords the potential to create states of solid-state matter at pressures greater than those achievable in diamond anvil cells. A fundamental understanding of this process requires a knowledge of the loading conditions that discriminate between so-called quasi-isentropic (QI) conditions and those pertaining to the higher entropy states produced by shock loading. We present here molecular dynamics simulations of single-crystal copper deformed over a range of strain rates and demonstrate that QI states at high pressure and low temperature can be present even at strain rates in excess of 1012 s−1. These states survive long enough to be studied with novel ultrafast techniques, in principle allowing simple, compact, isentropic compression experiments. Our atomistic simulations, with up to 25 million atoms, simulated for ramp durations of up to 300 ps, show how plastic deformation and melting varies with strain rate.Fil: Higginbotham, A.. University of Oxford. Department of Physics; Reino UnidoFil: Hawreliak, J.. Lawrence Livermore National Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Kimminau, G.. University of Oxford. Department of Physics; Reino UnidoFil: Park, N.. No especifíca;Fil: Reed, E.. Lawrence Livermore National Laboratory; Estados UnidosFil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Wark, J. S.. University of Oxford; Reino UnidoAmerican Physical Society2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/199494Higginbotham, A.; Hawreliak, J.; Bringa, Eduardo Marcial; Kimminau, G.; Park, N.; et al.; Molecular dynamics simulations of ramp-compressed copper; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 85; 2; 1-2012; 24112-241161098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.85.024112info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:34Zoai:ri.conicet.gov.ar:11336/199494instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:35.097CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Molecular dynamics simulations of ramp-compressed copper |
title |
Molecular dynamics simulations of ramp-compressed copper |
spellingShingle |
Molecular dynamics simulations of ramp-compressed copper Higginbotham, A. Molecular dynamics ramp compression copper |
title_short |
Molecular dynamics simulations of ramp-compressed copper |
title_full |
Molecular dynamics simulations of ramp-compressed copper |
title_fullStr |
Molecular dynamics simulations of ramp-compressed copper |
title_full_unstemmed |
Molecular dynamics simulations of ramp-compressed copper |
title_sort |
Molecular dynamics simulations of ramp-compressed copper |
dc.creator.none.fl_str_mv |
Higginbotham, A. Hawreliak, J. Bringa, Eduardo Marcial Kimminau, G. Park, N. Reed, E. Remington, B. A. Wark, J. S. |
author |
Higginbotham, A. |
author_facet |
Higginbotham, A. Hawreliak, J. Bringa, Eduardo Marcial Kimminau, G. Park, N. Reed, E. Remington, B. A. Wark, J. S. |
author_role |
author |
author2 |
Hawreliak, J. Bringa, Eduardo Marcial Kimminau, G. Park, N. Reed, E. Remington, B. A. Wark, J. S. |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
Molecular dynamics ramp compression copper |
topic |
Molecular dynamics ramp compression copper |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The compression of solids by a ramped pressure pulse, as opposed to shock compression, affords the potential to create states of solid-state matter at pressures greater than those achievable in diamond anvil cells. A fundamental understanding of this process requires a knowledge of the loading conditions that discriminate between so-called quasi-isentropic (QI) conditions and those pertaining to the higher entropy states produced by shock loading. We present here molecular dynamics simulations of single-crystal copper deformed over a range of strain rates and demonstrate that QI states at high pressure and low temperature can be present even at strain rates in excess of 1012 s−1. These states survive long enough to be studied with novel ultrafast techniques, in principle allowing simple, compact, isentropic compression experiments. Our atomistic simulations, with up to 25 million atoms, simulated for ramp durations of up to 300 ps, show how plastic deformation and melting varies with strain rate. Fil: Higginbotham, A.. University of Oxford. Department of Physics; Reino Unido Fil: Hawreliak, J.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Kimminau, G.. University of Oxford. Department of Physics; Reino Unido Fil: Park, N.. No especifíca; Fil: Reed, E.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados Unidos Fil: Wark, J. S.. University of Oxford; Reino Unido |
description |
The compression of solids by a ramped pressure pulse, as opposed to shock compression, affords the potential to create states of solid-state matter at pressures greater than those achievable in diamond anvil cells. A fundamental understanding of this process requires a knowledge of the loading conditions that discriminate between so-called quasi-isentropic (QI) conditions and those pertaining to the higher entropy states produced by shock loading. We present here molecular dynamics simulations of single-crystal copper deformed over a range of strain rates and demonstrate that QI states at high pressure and low temperature can be present even at strain rates in excess of 1012 s−1. These states survive long enough to be studied with novel ultrafast techniques, in principle allowing simple, compact, isentropic compression experiments. Our atomistic simulations, with up to 25 million atoms, simulated for ramp durations of up to 300 ps, show how plastic deformation and melting varies with strain rate. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/199494 Higginbotham, A.; Hawreliak, J.; Bringa, Eduardo Marcial; Kimminau, G.; Park, N.; et al.; Molecular dynamics simulations of ramp-compressed copper; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 85; 2; 1-2012; 24112-24116 1098-0121 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/199494 |
identifier_str_mv |
Higginbotham, A.; Hawreliak, J.; Bringa, Eduardo Marcial; Kimminau, G.; Park, N.; et al.; Molecular dynamics simulations of ramp-compressed copper; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 85; 2; 1-2012; 24112-24116 1098-0121 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.85.024112 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614217477390336 |
score |
13.070432 |