Molecular dynamics simulations of ramp-compressed copper

Autores
Higginbotham, A.; Hawreliak, J.; Bringa, Eduardo Marcial; Kimminau, G.; Park, N.; Reed, E.; Remington, B. A.; Wark, J. S.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The compression of solids by a ramped pressure pulse, as opposed to shock compression, affords the potential to create states of solid-state matter at pressures greater than those achievable in diamond anvil cells. A fundamental understanding of this process requires a knowledge of the loading conditions that discriminate between so-called quasi-isentropic (QI) conditions and those pertaining to the higher entropy states produced by shock loading. We present here molecular dynamics simulations of single-crystal copper deformed over a range of strain rates and demonstrate that QI states at high pressure and low temperature can be present even at strain rates in excess of 1012 s−1. These states survive long enough to be studied with novel ultrafast techniques, in principle allowing simple, compact, isentropic compression experiments. Our atomistic simulations, with up to 25 million atoms, simulated for ramp durations of up to 300 ps, show how plastic deformation and melting varies with strain rate.
Fil: Higginbotham, A.. University of Oxford. Department of Physics; Reino Unido
Fil: Hawreliak, J.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Kimminau, G.. University of Oxford. Department of Physics; Reino Unido
Fil: Park, N.. No especifíca;
Fil: Reed, E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Wark, J. S.. University of Oxford; Reino Unido
Materia
Molecular dynamics
ramp compression
copper
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/199494

id CONICETDig_bdb7f9f080506206c34568786f176d02
oai_identifier_str oai:ri.conicet.gov.ar:11336/199494
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Molecular dynamics simulations of ramp-compressed copperHigginbotham, A.Hawreliak, J.Bringa, Eduardo MarcialKimminau, G.Park, N.Reed, E.Remington, B. A.Wark, J. S.Molecular dynamicsramp compressioncopperhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The compression of solids by a ramped pressure pulse, as opposed to shock compression, affords the potential to create states of solid-state matter at pressures greater than those achievable in diamond anvil cells. A fundamental understanding of this process requires a knowledge of the loading conditions that discriminate between so-called quasi-isentropic (QI) conditions and those pertaining to the higher entropy states produced by shock loading. We present here molecular dynamics simulations of single-crystal copper deformed over a range of strain rates and demonstrate that QI states at high pressure and low temperature can be present even at strain rates in excess of 1012 s−1. These states survive long enough to be studied with novel ultrafast techniques, in principle allowing simple, compact, isentropic compression experiments. Our atomistic simulations, with up to 25 million atoms, simulated for ramp durations of up to 300 ps, show how plastic deformation and melting varies with strain rate.Fil: Higginbotham, A.. University of Oxford. Department of Physics; Reino UnidoFil: Hawreliak, J.. Lawrence Livermore National Laboratory; Estados UnidosFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Kimminau, G.. University of Oxford. Department of Physics; Reino UnidoFil: Park, N.. No especifíca;Fil: Reed, E.. Lawrence Livermore National Laboratory; Estados UnidosFil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados UnidosFil: Wark, J. S.. University of Oxford; Reino UnidoAmerican Physical Society2012-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/199494Higginbotham, A.; Hawreliak, J.; Bringa, Eduardo Marcial; Kimminau, G.; Park, N.; et al.; Molecular dynamics simulations of ramp-compressed copper; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 85; 2; 1-2012; 24112-241161098-0121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.85.024112info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:22:34Zoai:ri.conicet.gov.ar:11336/199494instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:22:35.097CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Molecular dynamics simulations of ramp-compressed copper
title Molecular dynamics simulations of ramp-compressed copper
spellingShingle Molecular dynamics simulations of ramp-compressed copper
Higginbotham, A.
Molecular dynamics
ramp compression
copper
title_short Molecular dynamics simulations of ramp-compressed copper
title_full Molecular dynamics simulations of ramp-compressed copper
title_fullStr Molecular dynamics simulations of ramp-compressed copper
title_full_unstemmed Molecular dynamics simulations of ramp-compressed copper
title_sort Molecular dynamics simulations of ramp-compressed copper
dc.creator.none.fl_str_mv Higginbotham, A.
Hawreliak, J.
Bringa, Eduardo Marcial
Kimminau, G.
Park, N.
Reed, E.
Remington, B. A.
Wark, J. S.
author Higginbotham, A.
author_facet Higginbotham, A.
Hawreliak, J.
Bringa, Eduardo Marcial
Kimminau, G.
Park, N.
Reed, E.
Remington, B. A.
Wark, J. S.
author_role author
author2 Hawreliak, J.
Bringa, Eduardo Marcial
Kimminau, G.
Park, N.
Reed, E.
Remington, B. A.
Wark, J. S.
author2_role author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Molecular dynamics
ramp compression
copper
topic Molecular dynamics
ramp compression
copper
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The compression of solids by a ramped pressure pulse, as opposed to shock compression, affords the potential to create states of solid-state matter at pressures greater than those achievable in diamond anvil cells. A fundamental understanding of this process requires a knowledge of the loading conditions that discriminate between so-called quasi-isentropic (QI) conditions and those pertaining to the higher entropy states produced by shock loading. We present here molecular dynamics simulations of single-crystal copper deformed over a range of strain rates and demonstrate that QI states at high pressure and low temperature can be present even at strain rates in excess of 1012 s−1. These states survive long enough to be studied with novel ultrafast techniques, in principle allowing simple, compact, isentropic compression experiments. Our atomistic simulations, with up to 25 million atoms, simulated for ramp durations of up to 300 ps, show how plastic deformation and melting varies with strain rate.
Fil: Higginbotham, A.. University of Oxford. Department of Physics; Reino Unido
Fil: Hawreliak, J.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Kimminau, G.. University of Oxford. Department of Physics; Reino Unido
Fil: Park, N.. No especifíca;
Fil: Reed, E.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Remington, B. A.. Lawrence Livermore National Laboratory; Estados Unidos
Fil: Wark, J. S.. University of Oxford; Reino Unido
description The compression of solids by a ramped pressure pulse, as opposed to shock compression, affords the potential to create states of solid-state matter at pressures greater than those achievable in diamond anvil cells. A fundamental understanding of this process requires a knowledge of the loading conditions that discriminate between so-called quasi-isentropic (QI) conditions and those pertaining to the higher entropy states produced by shock loading. We present here molecular dynamics simulations of single-crystal copper deformed over a range of strain rates and demonstrate that QI states at high pressure and low temperature can be present even at strain rates in excess of 1012 s−1. These states survive long enough to be studied with novel ultrafast techniques, in principle allowing simple, compact, isentropic compression experiments. Our atomistic simulations, with up to 25 million atoms, simulated for ramp durations of up to 300 ps, show how plastic deformation and melting varies with strain rate.
publishDate 2012
dc.date.none.fl_str_mv 2012-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/199494
Higginbotham, A.; Hawreliak, J.; Bringa, Eduardo Marcial; Kimminau, G.; Park, N.; et al.; Molecular dynamics simulations of ramp-compressed copper; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 85; 2; 1-2012; 24112-24116
1098-0121
CONICET Digital
CONICET
url http://hdl.handle.net/11336/199494
identifier_str_mv Higginbotham, A.; Hawreliak, J.; Bringa, Eduardo Marcial; Kimminau, G.; Park, N.; et al.; Molecular dynamics simulations of ramp-compressed copper; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 85; 2; 1-2012; 24112-24116
1098-0121
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevB.85.024112
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614217477390336
score 13.070432