Simulations of copper single crystals subjected to rapid shear

Autores
Higginbotham, Andrew; Bringa, Eduardo Marcial; Marian, Jaime; Park, Nigel; Suggit, Matthew; Wark, Justin S.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We report on nonequilibrium molecular dynamics simulations of single crystals of copper experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes a single dislocation dipole is subjected to a total shear strain of close to 10% on time-scales ranging from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in the system due to the subsequent plastic work can be determined from the initial elastic strain energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation velocity, which itself is a function of shear stress. A determination of the stress-dependence of the dislocation velocity allows us to construct a simple analytic model for the temperature rise in the system as a function of strain rate, and this model is found to be in good agreement with the simulations. For the effective dislocation density within the simulations, 7.8×1011cm−27.8×1011cm−2, we find that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the final temperature. We discuss these results in the context of the growing interest in producing high pressure, solid-state matter, by quasi-isentropic (rather than shock) compression.
Fil: Higginbotham, Andrew. University Of Oxford. Department Of Physics; Reino Unido
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Marian, Jaime. Lawrence Livermore National Laboratory. Physical and Life Sciences Directorate; Estados Unidos
Fil: Park, Nigel.
Fil: Suggit, Matthew. University Of Oxford. Department Of Physics; Reino Unido
Fil: Wark, Justin S.. University Of Oxford. Department Of Physics; Reino Unido
Materia
COPPER
DISLOCATION DIPOLES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17909

id CONICETDig_29d3a49a96ccd7bdc48f9594c2db65b3
oai_identifier_str oai:ri.conicet.gov.ar:11336/17909
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simulations of copper single crystals subjected to rapid shearHigginbotham, AndrewBringa, Eduardo MarcialMarian, JaimePark, NigelSuggit, MatthewWark, Justin S.COPPERDISLOCATION DIPOLEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We report on nonequilibrium molecular dynamics simulations of single crystals of copper experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes a single dislocation dipole is subjected to a total shear strain of close to 10% on time-scales ranging from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in the system due to the subsequent plastic work can be determined from the initial elastic strain energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation velocity, which itself is a function of shear stress. A determination of the stress-dependence of the dislocation velocity allows us to construct a simple analytic model for the temperature rise in the system as a function of strain rate, and this model is found to be in good agreement with the simulations. For the effective dislocation density within the simulations, 7.8×1011cm−27.8×1011cm−2, we find that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the final temperature. We discuss these results in the context of the growing interest in producing high pressure, solid-state matter, by quasi-isentropic (rather than shock) compression.Fil: Higginbotham, Andrew. University Of Oxford. Department Of Physics; Reino UnidoFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Marian, Jaime. Lawrence Livermore National Laboratory. Physical and Life Sciences Directorate; Estados UnidosFil: Park, Nigel.Fil: Suggit, Matthew. University Of Oxford. Department Of Physics; Reino UnidoFil: Wark, Justin S.. University Of Oxford. Department Of Physics; Reino UnidoAmerican Institute Of Physics2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17909Higginbotham, Andrew; Bringa, Eduardo Marcial; Marian, Jaime; Park, Nigel; Suggit, Matthew; et al.; Simulations of copper single crystals subjected to rapid shear; American Institute Of Physics; Journal Of Applied Physics; 109; 6; 3-2011; 63530-635360021-8979enginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3560912info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3560912info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:45Zoai:ri.conicet.gov.ar:11336/17909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:45.97CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simulations of copper single crystals subjected to rapid shear
title Simulations of copper single crystals subjected to rapid shear
spellingShingle Simulations of copper single crystals subjected to rapid shear
Higginbotham, Andrew
COPPER
DISLOCATION DIPOLES
title_short Simulations of copper single crystals subjected to rapid shear
title_full Simulations of copper single crystals subjected to rapid shear
title_fullStr Simulations of copper single crystals subjected to rapid shear
title_full_unstemmed Simulations of copper single crystals subjected to rapid shear
title_sort Simulations of copper single crystals subjected to rapid shear
dc.creator.none.fl_str_mv Higginbotham, Andrew
Bringa, Eduardo Marcial
Marian, Jaime
Park, Nigel
Suggit, Matthew
Wark, Justin S.
author Higginbotham, Andrew
author_facet Higginbotham, Andrew
Bringa, Eduardo Marcial
Marian, Jaime
Park, Nigel
Suggit, Matthew
Wark, Justin S.
author_role author
author2 Bringa, Eduardo Marcial
Marian, Jaime
Park, Nigel
Suggit, Matthew
Wark, Justin S.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv COPPER
DISLOCATION DIPOLES
topic COPPER
DISLOCATION DIPOLES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We report on nonequilibrium molecular dynamics simulations of single crystals of copper experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes a single dislocation dipole is subjected to a total shear strain of close to 10% on time-scales ranging from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in the system due to the subsequent plastic work can be determined from the initial elastic strain energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation velocity, which itself is a function of shear stress. A determination of the stress-dependence of the dislocation velocity allows us to construct a simple analytic model for the temperature rise in the system as a function of strain rate, and this model is found to be in good agreement with the simulations. For the effective dislocation density within the simulations, 7.8×1011cm−27.8×1011cm−2, we find that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the final temperature. We discuss these results in the context of the growing interest in producing high pressure, solid-state matter, by quasi-isentropic (rather than shock) compression.
Fil: Higginbotham, Andrew. University Of Oxford. Department Of Physics; Reino Unido
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Marian, Jaime. Lawrence Livermore National Laboratory. Physical and Life Sciences Directorate; Estados Unidos
Fil: Park, Nigel.
Fil: Suggit, Matthew. University Of Oxford. Department Of Physics; Reino Unido
Fil: Wark, Justin S.. University Of Oxford. Department Of Physics; Reino Unido
description We report on nonequilibrium molecular dynamics simulations of single crystals of copper experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes a single dislocation dipole is subjected to a total shear strain of close to 10% on time-scales ranging from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in the system due to the subsequent plastic work can be determined from the initial elastic strain energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation velocity, which itself is a function of shear stress. A determination of the stress-dependence of the dislocation velocity allows us to construct a simple analytic model for the temperature rise in the system as a function of strain rate, and this model is found to be in good agreement with the simulations. For the effective dislocation density within the simulations, 7.8×1011cm−27.8×1011cm−2, we find that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the final temperature. We discuss these results in the context of the growing interest in producing high pressure, solid-state matter, by quasi-isentropic (rather than shock) compression.
publishDate 2011
dc.date.none.fl_str_mv 2011-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17909
Higginbotham, Andrew; Bringa, Eduardo Marcial; Marian, Jaime; Park, Nigel; Suggit, Matthew; et al.; Simulations of copper single crystals subjected to rapid shear; American Institute Of Physics; Journal Of Applied Physics; 109; 6; 3-2011; 63530-63536
0021-8979
url http://hdl.handle.net/11336/17909
identifier_str_mv Higginbotham, Andrew; Bringa, Eduardo Marcial; Marian, Jaime; Park, Nigel; Suggit, Matthew; et al.; Simulations of copper single crystals subjected to rapid shear; American Institute Of Physics; Journal Of Applied Physics; 109; 6; 3-2011; 63530-63536
0021-8979
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3560912
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3560912
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute Of Physics
publisher.none.fl_str_mv American Institute Of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614291990249472
score 13.070432