Simulations of copper single crystals subjected to rapid shear
- Autores
- Higginbotham, Andrew; Bringa, Eduardo Marcial; Marian, Jaime; Park, Nigel; Suggit, Matthew; Wark, Justin S.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We report on nonequilibrium molecular dynamics simulations of single crystals of copper experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes a single dislocation dipole is subjected to a total shear strain of close to 10% on time-scales ranging from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in the system due to the subsequent plastic work can be determined from the initial elastic strain energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation velocity, which itself is a function of shear stress. A determination of the stress-dependence of the dislocation velocity allows us to construct a simple analytic model for the temperature rise in the system as a function of strain rate, and this model is found to be in good agreement with the simulations. For the effective dislocation density within the simulations, 7.8×1011cm−27.8×1011cm−2, we find that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the final temperature. We discuss these results in the context of the growing interest in producing high pressure, solid-state matter, by quasi-isentropic (rather than shock) compression.
Fil: Higginbotham, Andrew. University Of Oxford. Department Of Physics; Reino Unido
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Marian, Jaime. Lawrence Livermore National Laboratory. Physical and Life Sciences Directorate; Estados Unidos
Fil: Park, Nigel.
Fil: Suggit, Matthew. University Of Oxford. Department Of Physics; Reino Unido
Fil: Wark, Justin S.. University Of Oxford. Department Of Physics; Reino Unido - Materia
-
COPPER
DISLOCATION DIPOLES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/17909
Ver los metadatos del registro completo
id |
CONICETDig_29d3a49a96ccd7bdc48f9594c2db65b3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/17909 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simulations of copper single crystals subjected to rapid shearHigginbotham, AndrewBringa, Eduardo MarcialMarian, JaimePark, NigelSuggit, MatthewWark, Justin S.COPPERDISLOCATION DIPOLEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We report on nonequilibrium molecular dynamics simulations of single crystals of copper experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes a single dislocation dipole is subjected to a total shear strain of close to 10% on time-scales ranging from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in the system due to the subsequent plastic work can be determined from the initial elastic strain energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation velocity, which itself is a function of shear stress. A determination of the stress-dependence of the dislocation velocity allows us to construct a simple analytic model for the temperature rise in the system as a function of strain rate, and this model is found to be in good agreement with the simulations. For the effective dislocation density within the simulations, 7.8×1011cm−27.8×1011cm−2, we find that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the final temperature. We discuss these results in the context of the growing interest in producing high pressure, solid-state matter, by quasi-isentropic (rather than shock) compression.Fil: Higginbotham, Andrew. University Of Oxford. Department Of Physics; Reino UnidoFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Marian, Jaime. Lawrence Livermore National Laboratory. Physical and Life Sciences Directorate; Estados UnidosFil: Park, Nigel.Fil: Suggit, Matthew. University Of Oxford. Department Of Physics; Reino UnidoFil: Wark, Justin S.. University Of Oxford. Department Of Physics; Reino UnidoAmerican Institute Of Physics2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17909Higginbotham, Andrew; Bringa, Eduardo Marcial; Marian, Jaime; Park, Nigel; Suggit, Matthew; et al.; Simulations of copper single crystals subjected to rapid shear; American Institute Of Physics; Journal Of Applied Physics; 109; 6; 3-2011; 63530-635360021-8979enginfo:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3560912info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3560912info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:28:45Zoai:ri.conicet.gov.ar:11336/17909instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:28:45.97CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simulations of copper single crystals subjected to rapid shear |
title |
Simulations of copper single crystals subjected to rapid shear |
spellingShingle |
Simulations of copper single crystals subjected to rapid shear Higginbotham, Andrew COPPER DISLOCATION DIPOLES |
title_short |
Simulations of copper single crystals subjected to rapid shear |
title_full |
Simulations of copper single crystals subjected to rapid shear |
title_fullStr |
Simulations of copper single crystals subjected to rapid shear |
title_full_unstemmed |
Simulations of copper single crystals subjected to rapid shear |
title_sort |
Simulations of copper single crystals subjected to rapid shear |
dc.creator.none.fl_str_mv |
Higginbotham, Andrew Bringa, Eduardo Marcial Marian, Jaime Park, Nigel Suggit, Matthew Wark, Justin S. |
author |
Higginbotham, Andrew |
author_facet |
Higginbotham, Andrew Bringa, Eduardo Marcial Marian, Jaime Park, Nigel Suggit, Matthew Wark, Justin S. |
author_role |
author |
author2 |
Bringa, Eduardo Marcial Marian, Jaime Park, Nigel Suggit, Matthew Wark, Justin S. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
COPPER DISLOCATION DIPOLES |
topic |
COPPER DISLOCATION DIPOLES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We report on nonequilibrium molecular dynamics simulations of single crystals of copper experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes a single dislocation dipole is subjected to a total shear strain of close to 10% on time-scales ranging from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in the system due to the subsequent plastic work can be determined from the initial elastic strain energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation velocity, which itself is a function of shear stress. A determination of the stress-dependence of the dislocation velocity allows us to construct a simple analytic model for the temperature rise in the system as a function of strain rate, and this model is found to be in good agreement with the simulations. For the effective dislocation density within the simulations, 7.8×1011cm−27.8×1011cm−2, we find that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the final temperature. We discuss these results in the context of the growing interest in producing high pressure, solid-state matter, by quasi-isentropic (rather than shock) compression. Fil: Higginbotham, Andrew. University Of Oxford. Department Of Physics; Reino Unido Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Marian, Jaime. Lawrence Livermore National Laboratory. Physical and Life Sciences Directorate; Estados Unidos Fil: Park, Nigel. Fil: Suggit, Matthew. University Of Oxford. Department Of Physics; Reino Unido Fil: Wark, Justin S.. University Of Oxford. Department Of Physics; Reino Unido |
description |
We report on nonequilibrium molecular dynamics simulations of single crystals of copper experiencing rapid shear strain. A model system, with periodic boundary conditions, which includes a single dislocation dipole is subjected to a total shear strain of close to 10% on time-scales ranging from the instantaneous to 50 ps. When the system is strained on a time-scale short compared with a phonon period, the initial total applied shear is purely elastic, and the eventual temperature rise in the system due to the subsequent plastic work can be determined from the initial elastic strain energy. The rate at which this plastic work occurs, and heat is generated, depends on the dislocation velocity, which itself is a function of shear stress. A determination of the stress-dependence of the dislocation velocity allows us to construct a simple analytic model for the temperature rise in the system as a function of strain rate, and this model is found to be in good agreement with the simulations. For the effective dislocation density within the simulations, 7.8×1011cm−27.8×1011cm−2, we find that applying the total shear strain on time-scales of a few tens of picoseconds greatly reduces the final temperature. We discuss these results in the context of the growing interest in producing high pressure, solid-state matter, by quasi-isentropic (rather than shock) compression. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/17909 Higginbotham, Andrew; Bringa, Eduardo Marcial; Marian, Jaime; Park, Nigel; Suggit, Matthew; et al.; Simulations of copper single crystals subjected to rapid shear; American Institute Of Physics; Journal Of Applied Physics; 109; 6; 3-2011; 63530-63536 0021-8979 |
url |
http://hdl.handle.net/11336/17909 |
identifier_str_mv |
Higginbotham, Andrew; Bringa, Eduardo Marcial; Marian, Jaime; Park, Nigel; Suggit, Matthew; et al.; Simulations of copper single crystals subjected to rapid shear; American Institute Of Physics; Journal Of Applied Physics; 109; 6; 3-2011; 63530-63536 0021-8979 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.3560912 info:eu-repo/semantics/altIdentifier/doi/10.1063/1.3560912 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute Of Physics |
publisher.none.fl_str_mv |
American Institute Of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614291990249472 |
score |
13.070432 |