Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes
- Autores
- Craig, Patricio Oliver; Lätzer, Joachim; Weinkam, Patrick; Hoffman, Ryan M. B.; Ferreiro, Diego; Komives, Elizabeth A.; Wolynes, Peter G.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Simulations based on perfectly funneled energy landscapes often capture many of the kinetic features of protein folding. We examined whether simulations based on funneled energy functions can also describe fluctuations in native-state protein ensembles. We quantitatively compared the site-specific local stability determined from structure-based folding simulations, with hydrogen exchange protection factors measured experimentally for ubiquitin, chymotrypsin inhibitor 2, and staphylococcal nuclease. Different structural definitions for the open and closed states based on the number of native contacts for each residue, as well as the hydrogen-bonding state, or a combination of both criteria were evaluated. The predicted exchange patterns agree with the experiments under native conditions, indicating that protein topology indeed has a dominant effect on the exchange kinetics. Insights into the simplest mechanistic interpretation of the amide exchange process were thus obtained.
Fil: Craig, Patricio Oliver. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. University of California San Diego. Department of Chemistry and Biochemistry; Estados Unidos
Fil: Lätzer, Joachim. Rutgers University. BioMaPS Institute; Estados Unidos
Fil: Weinkam, Patrick. University of California at San Francisco. Department of Bioengineering and Therapeutic Sciences; Estados Unidos
Fil: Hoffman, Ryan M. B.. University Of California At San Diego; Estados Unidos
Fil: Ferreiro, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina
Fil: Komives, Elizabeth A.. University Of California At San Diego; Estados Unidos
Fil: Wolynes, Peter G.. University Of California At San Diego; Estados Unidos - Materia
-
protein folding
hydrogen exchange
energy landscape
coarse grain models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13824
Ver los metadatos del registro completo
id |
CONICETDig_bda4b78af794d7838d4b777cd2992055 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13824 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Prediction of native-state hydrogen exchange from perfectly funneled energy landscapesCraig, Patricio OliverLätzer, JoachimWeinkam, PatrickHoffman, Ryan M. B.Ferreiro, DiegoKomives, Elizabeth A.Wolynes, Peter G.protein foldinghydrogen exchangeenergy landscapecoarse grain modelshttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Simulations based on perfectly funneled energy landscapes often capture many of the kinetic features of protein folding. We examined whether simulations based on funneled energy functions can also describe fluctuations in native-state protein ensembles. We quantitatively compared the site-specific local stability determined from structure-based folding simulations, with hydrogen exchange protection factors measured experimentally for ubiquitin, chymotrypsin inhibitor 2, and staphylococcal nuclease. Different structural definitions for the open and closed states based on the number of native contacts for each residue, as well as the hydrogen-bonding state, or a combination of both criteria were evaluated. The predicted exchange patterns agree with the experiments under native conditions, indicating that protein topology indeed has a dominant effect on the exchange kinetics. Insights into the simplest mechanistic interpretation of the amide exchange process were thus obtained.Fil: Craig, Patricio Oliver. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. University of California San Diego. Department of Chemistry and Biochemistry; Estados UnidosFil: Lätzer, Joachim. Rutgers University. BioMaPS Institute; Estados UnidosFil: Weinkam, Patrick. University of California at San Francisco. Department of Bioengineering and Therapeutic Sciences; Estados UnidosFil: Hoffman, Ryan M. B.. University Of California At San Diego; Estados UnidosFil: Ferreiro, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Komives, Elizabeth A.. University Of California At San Diego; Estados UnidosFil: Wolynes, Peter G.. University Of California At San Diego; Estados UnidosAmerican Chemical Society2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13824Craig, Patricio Oliver; Lätzer, Joachim; Weinkam, Patrick; Hoffman, Ryan M. B.; Ferreiro, Diego; et al.; Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes; American Chemical Society; Journal Of The American Chemical Society; 133; 43; -1-2011; 17463-174720002-7863enginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ja207506zinfo:eu-repo/semantics/altIdentifier/doi/10.1021/ja207506zinfo:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203634/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:43:25Zoai:ri.conicet.gov.ar:11336/13824instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:43:25.727CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes |
title |
Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes |
spellingShingle |
Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes Craig, Patricio Oliver protein folding hydrogen exchange energy landscape coarse grain models |
title_short |
Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes |
title_full |
Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes |
title_fullStr |
Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes |
title_full_unstemmed |
Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes |
title_sort |
Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes |
dc.creator.none.fl_str_mv |
Craig, Patricio Oliver Lätzer, Joachim Weinkam, Patrick Hoffman, Ryan M. B. Ferreiro, Diego Komives, Elizabeth A. Wolynes, Peter G. |
author |
Craig, Patricio Oliver |
author_facet |
Craig, Patricio Oliver Lätzer, Joachim Weinkam, Patrick Hoffman, Ryan M. B. Ferreiro, Diego Komives, Elizabeth A. Wolynes, Peter G. |
author_role |
author |
author2 |
Lätzer, Joachim Weinkam, Patrick Hoffman, Ryan M. B. Ferreiro, Diego Komives, Elizabeth A. Wolynes, Peter G. |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
protein folding hydrogen exchange energy landscape coarse grain models |
topic |
protein folding hydrogen exchange energy landscape coarse grain models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Simulations based on perfectly funneled energy landscapes often capture many of the kinetic features of protein folding. We examined whether simulations based on funneled energy functions can also describe fluctuations in native-state protein ensembles. We quantitatively compared the site-specific local stability determined from structure-based folding simulations, with hydrogen exchange protection factors measured experimentally for ubiquitin, chymotrypsin inhibitor 2, and staphylococcal nuclease. Different structural definitions for the open and closed states based on the number of native contacts for each residue, as well as the hydrogen-bonding state, or a combination of both criteria were evaluated. The predicted exchange patterns agree with the experiments under native conditions, indicating that protein topology indeed has a dominant effect on the exchange kinetics. Insights into the simplest mechanistic interpretation of the amide exchange process were thus obtained. Fil: Craig, Patricio Oliver. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. University of California San Diego. Department of Chemistry and Biochemistry; Estados Unidos Fil: Lätzer, Joachim. Rutgers University. BioMaPS Institute; Estados Unidos Fil: Weinkam, Patrick. University of California at San Francisco. Department of Bioengineering and Therapeutic Sciences; Estados Unidos Fil: Hoffman, Ryan M. B.. University Of California At San Diego; Estados Unidos Fil: Ferreiro, Diego. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentina Fil: Komives, Elizabeth A.. University Of California At San Diego; Estados Unidos Fil: Wolynes, Peter G.. University Of California At San Diego; Estados Unidos |
description |
Simulations based on perfectly funneled energy landscapes often capture many of the kinetic features of protein folding. We examined whether simulations based on funneled energy functions can also describe fluctuations in native-state protein ensembles. We quantitatively compared the site-specific local stability determined from structure-based folding simulations, with hydrogen exchange protection factors measured experimentally for ubiquitin, chymotrypsin inhibitor 2, and staphylococcal nuclease. Different structural definitions for the open and closed states based on the number of native contacts for each residue, as well as the hydrogen-bonding state, or a combination of both criteria were evaluated. The predicted exchange patterns agree with the experiments under native conditions, indicating that protein topology indeed has a dominant effect on the exchange kinetics. Insights into the simplest mechanistic interpretation of the amide exchange process were thus obtained. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13824 Craig, Patricio Oliver; Lätzer, Joachim; Weinkam, Patrick; Hoffman, Ryan M. B.; Ferreiro, Diego; et al.; Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes; American Chemical Society; Journal Of The American Chemical Society; 133; 43; -1-2011; 17463-17472 0002-7863 |
url |
http://hdl.handle.net/11336/13824 |
identifier_str_mv |
Craig, Patricio Oliver; Lätzer, Joachim; Weinkam, Patrick; Hoffman, Ryan M. B.; Ferreiro, Diego; et al.; Prediction of native-state hydrogen exchange from perfectly funneled energy landscapes; American Chemical Society; Journal Of The American Chemical Society; 133; 43; -1-2011; 17463-17472 0002-7863 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ja207506z info:eu-repo/semantics/altIdentifier/doi/10.1021/ja207506z info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203634/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613367243735040 |
score |
13.070432 |