Dynamics of one-state downhill protein folding
- Autores
- Li, Peng; Oliva, Fabiana Yolanda; Naganathan, Athi N.; Muñoz, Victor
- Año de publicación
- 2009
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The small helical protein BBL has been shown to fold and unfold in the absence of a free energy barrier according to a battery of quantitative criteria in equilibrium experiments, including probe-dependent equilibrium unfolding, complex coupling between denaturing agents, characteristic DSC thermogram, gradual melting of secondary structure, and heterogeneous atom-by-atom unfolding behaviors spanning the entire unfolding process. Here, we present the results of nanosecond T-jump experiments probing backbone structure by IR and end-to-end distance by FRET. The folding dynamics observed with these two probes are both exponential with common relaxation times but have large differences in amplitude following their probe-dependent equilibrium unfolding. The quantitative analysis of amplitude and relaxation time data for both probes shows that BBL folding dynamics are fully consistent with the one-state folding scenario and incompatible with alternative models involving one or several barrier crossing events. At 333 K, the relaxation time for BBL is 1.3 μs, in agreement with previous folding speed limit estimates. However, late folding events at room temperature are an order of magnitude slower (20 μs), indicating a relatively rough underlying energy landscape. Our results in BBL expose the dynamic features of one-state folding and chart the intrinsic time-scales for conformational motions along the folding process. Interestingly, the simple self-averaging folding dynamics of BBL are the exact dynamic properties required in molecular rheostats, thus supporting a biological role for one-state folding.
Fil: Li, Peng. University of Maryland; Estados Unidos. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España
Fil: Oliva, Fabiana Yolanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Naganathan, Athi N.. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados Unidos
Fil: Muñoz, Victor. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados Unidos - Materia
-
DOWNHILL FOLDING
FOLDING LANDSCAPE
LANDSCAPE TOPOGRAPHY
PROTEIN DYNAMICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113961
Ver los metadatos del registro completo
id |
CONICETDig_17e96927cb5b6cef1c0a8b94dd125908 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113961 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamics of one-state downhill protein foldingLi, PengOliva, Fabiana YolandaNaganathan, Athi N.Muñoz, VictorDOWNHILL FOLDINGFOLDING LANDSCAPELANDSCAPE TOPOGRAPHYPROTEIN DYNAMICShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The small helical protein BBL has been shown to fold and unfold in the absence of a free energy barrier according to a battery of quantitative criteria in equilibrium experiments, including probe-dependent equilibrium unfolding, complex coupling between denaturing agents, characteristic DSC thermogram, gradual melting of secondary structure, and heterogeneous atom-by-atom unfolding behaviors spanning the entire unfolding process. Here, we present the results of nanosecond T-jump experiments probing backbone structure by IR and end-to-end distance by FRET. The folding dynamics observed with these two probes are both exponential with common relaxation times but have large differences in amplitude following their probe-dependent equilibrium unfolding. The quantitative analysis of amplitude and relaxation time data for both probes shows that BBL folding dynamics are fully consistent with the one-state folding scenario and incompatible with alternative models involving one or several barrier crossing events. At 333 K, the relaxation time for BBL is 1.3 μs, in agreement with previous folding speed limit estimates. However, late folding events at room temperature are an order of magnitude slower (20 μs), indicating a relatively rough underlying energy landscape. Our results in BBL expose the dynamic features of one-state folding and chart the intrinsic time-scales for conformational motions along the folding process. Interestingly, the simple self-averaging folding dynamics of BBL are the exact dynamic properties required in molecular rheostats, thus supporting a biological role for one-state folding.Fil: Li, Peng. University of Maryland; Estados Unidos. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: Oliva, Fabiana Yolanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Naganathan, Athi N.. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados UnidosFil: Muñoz, Victor. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados UnidosNational Academy of Sciences2009-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113961Li, Peng; Oliva, Fabiana Yolanda; Naganathan, Athi N.; Muñoz, Victor; Dynamics of one-state downhill protein folding; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 106; 1; 1-2009; 103-1080027-84241091-6490CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.0802986106info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/106/1/103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:55Zoai:ri.conicet.gov.ar:11336/113961instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:55.683CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamics of one-state downhill protein folding |
title |
Dynamics of one-state downhill protein folding |
spellingShingle |
Dynamics of one-state downhill protein folding Li, Peng DOWNHILL FOLDING FOLDING LANDSCAPE LANDSCAPE TOPOGRAPHY PROTEIN DYNAMICS |
title_short |
Dynamics of one-state downhill protein folding |
title_full |
Dynamics of one-state downhill protein folding |
title_fullStr |
Dynamics of one-state downhill protein folding |
title_full_unstemmed |
Dynamics of one-state downhill protein folding |
title_sort |
Dynamics of one-state downhill protein folding |
dc.creator.none.fl_str_mv |
Li, Peng Oliva, Fabiana Yolanda Naganathan, Athi N. Muñoz, Victor |
author |
Li, Peng |
author_facet |
Li, Peng Oliva, Fabiana Yolanda Naganathan, Athi N. Muñoz, Victor |
author_role |
author |
author2 |
Oliva, Fabiana Yolanda Naganathan, Athi N. Muñoz, Victor |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DOWNHILL FOLDING FOLDING LANDSCAPE LANDSCAPE TOPOGRAPHY PROTEIN DYNAMICS |
topic |
DOWNHILL FOLDING FOLDING LANDSCAPE LANDSCAPE TOPOGRAPHY PROTEIN DYNAMICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The small helical protein BBL has been shown to fold and unfold in the absence of a free energy barrier according to a battery of quantitative criteria in equilibrium experiments, including probe-dependent equilibrium unfolding, complex coupling between denaturing agents, characteristic DSC thermogram, gradual melting of secondary structure, and heterogeneous atom-by-atom unfolding behaviors spanning the entire unfolding process. Here, we present the results of nanosecond T-jump experiments probing backbone structure by IR and end-to-end distance by FRET. The folding dynamics observed with these two probes are both exponential with common relaxation times but have large differences in amplitude following their probe-dependent equilibrium unfolding. The quantitative analysis of amplitude and relaxation time data for both probes shows that BBL folding dynamics are fully consistent with the one-state folding scenario and incompatible with alternative models involving one or several barrier crossing events. At 333 K, the relaxation time for BBL is 1.3 μs, in agreement with previous folding speed limit estimates. However, late folding events at room temperature are an order of magnitude slower (20 μs), indicating a relatively rough underlying energy landscape. Our results in BBL expose the dynamic features of one-state folding and chart the intrinsic time-scales for conformational motions along the folding process. Interestingly, the simple self-averaging folding dynamics of BBL are the exact dynamic properties required in molecular rheostats, thus supporting a biological role for one-state folding. Fil: Li, Peng. University of Maryland; Estados Unidos. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España Fil: Oliva, Fabiana Yolanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina Fil: Naganathan, Athi N.. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados Unidos Fil: Muñoz, Victor. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados Unidos |
description |
The small helical protein BBL has been shown to fold and unfold in the absence of a free energy barrier according to a battery of quantitative criteria in equilibrium experiments, including probe-dependent equilibrium unfolding, complex coupling between denaturing agents, characteristic DSC thermogram, gradual melting of secondary structure, and heterogeneous atom-by-atom unfolding behaviors spanning the entire unfolding process. Here, we present the results of nanosecond T-jump experiments probing backbone structure by IR and end-to-end distance by FRET. The folding dynamics observed with these two probes are both exponential with common relaxation times but have large differences in amplitude following their probe-dependent equilibrium unfolding. The quantitative analysis of amplitude and relaxation time data for both probes shows that BBL folding dynamics are fully consistent with the one-state folding scenario and incompatible with alternative models involving one or several barrier crossing events. At 333 K, the relaxation time for BBL is 1.3 μs, in agreement with previous folding speed limit estimates. However, late folding events at room temperature are an order of magnitude slower (20 μs), indicating a relatively rough underlying energy landscape. Our results in BBL expose the dynamic features of one-state folding and chart the intrinsic time-scales for conformational motions along the folding process. Interestingly, the simple self-averaging folding dynamics of BBL are the exact dynamic properties required in molecular rheostats, thus supporting a biological role for one-state folding. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113961 Li, Peng; Oliva, Fabiana Yolanda; Naganathan, Athi N.; Muñoz, Victor; Dynamics of one-state downhill protein folding; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 106; 1; 1-2009; 103-108 0027-8424 1091-6490 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/113961 |
identifier_str_mv |
Li, Peng; Oliva, Fabiana Yolanda; Naganathan, Athi N.; Muñoz, Victor; Dynamics of one-state downhill protein folding; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 106; 1; 1-2009; 103-108 0027-8424 1091-6490 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.0802986106 info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/106/1/103 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
National Academy of Sciences |
publisher.none.fl_str_mv |
National Academy of Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613542006751232 |
score |
13.070432 |