Dynamics of one-state downhill protein folding

Autores
Li, Peng; Oliva, Fabiana Yolanda; Naganathan, Athi N.; Muñoz, Victor
Año de publicación
2009
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The small helical protein BBL has been shown to fold and unfold in the absence of a free energy barrier according to a battery of quantitative criteria in equilibrium experiments, including probe-dependent equilibrium unfolding, complex coupling between denaturing agents, characteristic DSC thermogram, gradual melting of secondary structure, and heterogeneous atom-by-atom unfolding behaviors spanning the entire unfolding process. Here, we present the results of nanosecond T-jump experiments probing backbone structure by IR and end-to-end distance by FRET. The folding dynamics observed with these two probes are both exponential with common relaxation times but have large differences in amplitude following their probe-dependent equilibrium unfolding. The quantitative analysis of amplitude and relaxation time data for both probes shows that BBL folding dynamics are fully consistent with the one-state folding scenario and incompatible with alternative models involving one or several barrier crossing events. At 333 K, the relaxation time for BBL is 1.3 μs, in agreement with previous folding speed limit estimates. However, late folding events at room temperature are an order of magnitude slower (20 μs), indicating a relatively rough underlying energy landscape. Our results in BBL expose the dynamic features of one-state folding and chart the intrinsic time-scales for conformational motions along the folding process. Interestingly, the simple self-averaging folding dynamics of BBL are the exact dynamic properties required in molecular rheostats, thus supporting a biological role for one-state folding.
Fil: Li, Peng. University of Maryland; Estados Unidos. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España
Fil: Oliva, Fabiana Yolanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Naganathan, Athi N.. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados Unidos
Fil: Muñoz, Victor. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados Unidos
Materia
DOWNHILL FOLDING
FOLDING LANDSCAPE
LANDSCAPE TOPOGRAPHY
PROTEIN DYNAMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/113961

id CONICETDig_17e96927cb5b6cef1c0a8b94dd125908
oai_identifier_str oai:ri.conicet.gov.ar:11336/113961
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamics of one-state downhill protein foldingLi, PengOliva, Fabiana YolandaNaganathan, Athi N.Muñoz, VictorDOWNHILL FOLDINGFOLDING LANDSCAPELANDSCAPE TOPOGRAPHYPROTEIN DYNAMICShttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The small helical protein BBL has been shown to fold and unfold in the absence of a free energy barrier according to a battery of quantitative criteria in equilibrium experiments, including probe-dependent equilibrium unfolding, complex coupling between denaturing agents, characteristic DSC thermogram, gradual melting of secondary structure, and heterogeneous atom-by-atom unfolding behaviors spanning the entire unfolding process. Here, we present the results of nanosecond T-jump experiments probing backbone structure by IR and end-to-end distance by FRET. The folding dynamics observed with these two probes are both exponential with common relaxation times but have large differences in amplitude following their probe-dependent equilibrium unfolding. The quantitative analysis of amplitude and relaxation time data for both probes shows that BBL folding dynamics are fully consistent with the one-state folding scenario and incompatible with alternative models involving one or several barrier crossing events. At 333 K, the relaxation time for BBL is 1.3 μs, in agreement with previous folding speed limit estimates. However, late folding events at room temperature are an order of magnitude slower (20 μs), indicating a relatively rough underlying energy landscape. Our results in BBL expose the dynamic features of one-state folding and chart the intrinsic time-scales for conformational motions along the folding process. Interestingly, the simple self-averaging folding dynamics of BBL are the exact dynamic properties required in molecular rheostats, thus supporting a biological role for one-state folding.Fil: Li, Peng. University of Maryland; Estados Unidos. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: Oliva, Fabiana Yolanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Naganathan, Athi N.. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados UnidosFil: Muñoz, Victor. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados UnidosNational Academy of Sciences2009-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113961Li, Peng; Oliva, Fabiana Yolanda; Naganathan, Athi N.; Muñoz, Victor; Dynamics of one-state downhill protein folding; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 106; 1; 1-2009; 103-1080027-84241091-6490CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.0802986106info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/106/1/103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:55Zoai:ri.conicet.gov.ar:11336/113961instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:55.683CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamics of one-state downhill protein folding
title Dynamics of one-state downhill protein folding
spellingShingle Dynamics of one-state downhill protein folding
Li, Peng
DOWNHILL FOLDING
FOLDING LANDSCAPE
LANDSCAPE TOPOGRAPHY
PROTEIN DYNAMICS
title_short Dynamics of one-state downhill protein folding
title_full Dynamics of one-state downhill protein folding
title_fullStr Dynamics of one-state downhill protein folding
title_full_unstemmed Dynamics of one-state downhill protein folding
title_sort Dynamics of one-state downhill protein folding
dc.creator.none.fl_str_mv Li, Peng
Oliva, Fabiana Yolanda
Naganathan, Athi N.
Muñoz, Victor
author Li, Peng
author_facet Li, Peng
Oliva, Fabiana Yolanda
Naganathan, Athi N.
Muñoz, Victor
author_role author
author2 Oliva, Fabiana Yolanda
Naganathan, Athi N.
Muñoz, Victor
author2_role author
author
author
dc.subject.none.fl_str_mv DOWNHILL FOLDING
FOLDING LANDSCAPE
LANDSCAPE TOPOGRAPHY
PROTEIN DYNAMICS
topic DOWNHILL FOLDING
FOLDING LANDSCAPE
LANDSCAPE TOPOGRAPHY
PROTEIN DYNAMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The small helical protein BBL has been shown to fold and unfold in the absence of a free energy barrier according to a battery of quantitative criteria in equilibrium experiments, including probe-dependent equilibrium unfolding, complex coupling between denaturing agents, characteristic DSC thermogram, gradual melting of secondary structure, and heterogeneous atom-by-atom unfolding behaviors spanning the entire unfolding process. Here, we present the results of nanosecond T-jump experiments probing backbone structure by IR and end-to-end distance by FRET. The folding dynamics observed with these two probes are both exponential with common relaxation times but have large differences in amplitude following their probe-dependent equilibrium unfolding. The quantitative analysis of amplitude and relaxation time data for both probes shows that BBL folding dynamics are fully consistent with the one-state folding scenario and incompatible with alternative models involving one or several barrier crossing events. At 333 K, the relaxation time for BBL is 1.3 μs, in agreement with previous folding speed limit estimates. However, late folding events at room temperature are an order of magnitude slower (20 μs), indicating a relatively rough underlying energy landscape. Our results in BBL expose the dynamic features of one-state folding and chart the intrinsic time-scales for conformational motions along the folding process. Interestingly, the simple self-averaging folding dynamics of BBL are the exact dynamic properties required in molecular rheostats, thus supporting a biological role for one-state folding.
Fil: Li, Peng. University of Maryland; Estados Unidos. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España
Fil: Oliva, Fabiana Yolanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Naganathan, Athi N.. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados Unidos
Fil: Muñoz, Victor. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España. University of Maryland; Estados Unidos
description The small helical protein BBL has been shown to fold and unfold in the absence of a free energy barrier according to a battery of quantitative criteria in equilibrium experiments, including probe-dependent equilibrium unfolding, complex coupling between denaturing agents, characteristic DSC thermogram, gradual melting of secondary structure, and heterogeneous atom-by-atom unfolding behaviors spanning the entire unfolding process. Here, we present the results of nanosecond T-jump experiments probing backbone structure by IR and end-to-end distance by FRET. The folding dynamics observed with these two probes are both exponential with common relaxation times but have large differences in amplitude following their probe-dependent equilibrium unfolding. The quantitative analysis of amplitude and relaxation time data for both probes shows that BBL folding dynamics are fully consistent with the one-state folding scenario and incompatible with alternative models involving one or several barrier crossing events. At 333 K, the relaxation time for BBL is 1.3 μs, in agreement with previous folding speed limit estimates. However, late folding events at room temperature are an order of magnitude slower (20 μs), indicating a relatively rough underlying energy landscape. Our results in BBL expose the dynamic features of one-state folding and chart the intrinsic time-scales for conformational motions along the folding process. Interestingly, the simple self-averaging folding dynamics of BBL are the exact dynamic properties required in molecular rheostats, thus supporting a biological role for one-state folding.
publishDate 2009
dc.date.none.fl_str_mv 2009-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/113961
Li, Peng; Oliva, Fabiana Yolanda; Naganathan, Athi N.; Muñoz, Victor; Dynamics of one-state downhill protein folding; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 106; 1; 1-2009; 103-108
0027-8424
1091-6490
CONICET Digital
CONICET
url http://hdl.handle.net/11336/113961
identifier_str_mv Li, Peng; Oliva, Fabiana Yolanda; Naganathan, Athi N.; Muñoz, Victor; Dynamics of one-state downhill protein folding; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 106; 1; 1-2009; 103-108
0027-8424
1091-6490
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1073/pnas.0802986106
info:eu-repo/semantics/altIdentifier/url/https://www.pnas.org/content/106/1/103
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv National Academy of Sciences
publisher.none.fl_str_mv National Academy of Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613542006751232
score 13.070432