Ensemble tractography

Autores
Takemura, Hiromasa; Caiafa, César Federico; Wandell, Brian A.; Pestilli, Franco
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Fiber tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with a specific parameters sets poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate fascicles from an ensemble of algorithms (deterministic and probabilistic) and sweeping through key parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validatedprediction error of the diffusion MRI data than optimized connectomes generated using the singlealgorithms or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.
Fil: Takemura, Hiromasa. University of Stanford; Estados Unidos. Osaka University; Japón
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Wandell, Brian A.. University of Stanford; Estados Unidos
Fil: Pestilli, Franco. Indiana University; Estados Unidos
Materia
Tractography
Human Connectome
Magnetic Resonance
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/24450

id CONICETDig_bd501fd299a97691d74bb2a11a26e48c
oai_identifier_str oai:ri.conicet.gov.ar:11336/24450
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ensemble tractographyTakemura, HiromasaCaiafa, César FedericoWandell, Brian A.Pestilli, FrancoTractographyHuman ConnectomeMagnetic Resonancehttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Fiber tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with a specific parameters sets poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate fascicles from an ensemble of algorithms (deterministic and probabilistic) and sweeping through key parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validatedprediction error of the diffusion MRI data than optimized connectomes generated using the singlealgorithms or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.Fil: Takemura, Hiromasa. University of Stanford; Estados Unidos. Osaka University; JapónFil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Wandell, Brian A.. University of Stanford; Estados UnidosFil: Pestilli, Franco. Indiana University; Estados UnidosPublic Library of Science2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/24450Takemura, Hiromasa; Caiafa, César Federico; Wandell, Brian A.; Pestilli, Franco; Ensemble tractography; Public Library of Science; Plos Computational Biology; 12; 2; 2-2016; 1-22; e10046921553-734XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004692info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1004692info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:49:49Zoai:ri.conicet.gov.ar:11336/24450instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:49:49.945CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ensemble tractography
title Ensemble tractography
spellingShingle Ensemble tractography
Takemura, Hiromasa
Tractography
Human Connectome
Magnetic Resonance
title_short Ensemble tractography
title_full Ensemble tractography
title_fullStr Ensemble tractography
title_full_unstemmed Ensemble tractography
title_sort Ensemble tractography
dc.creator.none.fl_str_mv Takemura, Hiromasa
Caiafa, César Federico
Wandell, Brian A.
Pestilli, Franco
author Takemura, Hiromasa
author_facet Takemura, Hiromasa
Caiafa, César Federico
Wandell, Brian A.
Pestilli, Franco
author_role author
author2 Caiafa, César Federico
Wandell, Brian A.
Pestilli, Franco
author2_role author
author
author
dc.subject.none.fl_str_mv Tractography
Human Connectome
Magnetic Resonance
topic Tractography
Human Connectome
Magnetic Resonance
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Fiber tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with a specific parameters sets poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate fascicles from an ensemble of algorithms (deterministic and probabilistic) and sweeping through key parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validatedprediction error of the diffusion MRI data than optimized connectomes generated using the singlealgorithms or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.
Fil: Takemura, Hiromasa. University of Stanford; Estados Unidos. Osaka University; Japón
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Wandell, Brian A.. University of Stanford; Estados Unidos
Fil: Pestilli, Franco. Indiana University; Estados Unidos
description Fiber tractography uses diffusion MRI to estimate the trajectory and cortical projection zones of white matter fascicles in the living human brain. There are many different tractography algorithms and each requires the user to set several parameters, such as curvature threshold. Choosing a single algorithm with a specific parameters sets poses two challenges. First, different algorithms and parameter values produce different results. Second, the optimal choice of algorithm and parameter value may differ between different white matter regions or different fascicles, subjects, and acquisition parameters. We propose using ensemble methods to reduce algorithm and parameter dependencies. To do so we separate the processes of fascicle generation and evaluation. Specifically, we analyze the value of creating optimized connectomes by systematically combining candidate fascicles from an ensemble of algorithms (deterministic and probabilistic) and sweeping through key parameters (curvature and stopping criterion). The ensemble approach leads to optimized connectomes that provide better cross-validatedprediction error of the diffusion MRI data than optimized connectomes generated using the singlealgorithms or parameter set. Furthermore, the ensemble approach produces connectomes that contain both short- and long-range fascicles, whereas single-parameter connectomes are biased towards one or the other. In summary, a systematic ensemble tractography approach can produce connectomes that are superior to standard single parameter estimates both for predicting the diffusion measurements and estimating white matter fascicles.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/24450
Takemura, Hiromasa; Caiafa, César Federico; Wandell, Brian A.; Pestilli, Franco; Ensemble tractography; Public Library of Science; Plos Computational Biology; 12; 2; 2-2016; 1-22; e1004692
1553-734X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/24450
identifier_str_mv Takemura, Hiromasa; Caiafa, César Federico; Wandell, Brian A.; Pestilli, Franco; Ensemble tractography; Public Library of Science; Plos Computational Biology; 12; 2; 2-2016; 1-22; e1004692
1553-734X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004692
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pcbi.1004692
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/zip
application/pdf
dc.publisher.none.fl_str_mv Public Library of Science
publisher.none.fl_str_mv Public Library of Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268996990140416
score 13.13397