Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome

Autores
Valencia Urbina, Carlos Eduardo; Cannas, Sergio Alejandro; Gleiser, Pablo Martin
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze the neural dynamics and their relation with the emergent actions of a robotic vehicle that is controlled by a neural network numerical simulation based on the nervous system of the nematode Caenorhabditis elegans. The robot interacts with the environment through a sensor that transmits the information to sensory neurons, while motor neurons outputs are connected to wheels. This is enough to allow emergent robot actions in complex environments, such as avoiding collisions with obstacles. Working with robotic models makes it possible to simultaneously keep track of the dynamics of all the neurons and also register the actions of the robot in the environment in real time, while avoiding the complex technicalities of simulating a real environment. This allowed us to identify several relevant features of the neural dynamics associated with the emergent actions of the robot, some of which have already been observed in biological worms. These results suggest that some basic aspects of behaviors observed in living beings are determined by the underlying structure of the associated neural network.
Fil: Valencia Urbina, Carlos Eduardo. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Cannas, Sergio Alejandro. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Gleiser, Pablo Martin. Instituto Tecnológico de Buenos Aires; Argentina. Universidad Nacional de Córdoba; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina
Materia
C. ELEGANS
CONNECTOME
ROBOT
SELF-ORGANIZED SYSTEMS
SYNCHRONIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/219000

id CONICETDig_e76899d6aa6e55479038f54dc94fb993
oai_identifier_str oai:ri.conicet.gov.ar:11336/219000
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectomeValencia Urbina, Carlos EduardoCannas, Sergio AlejandroGleiser, Pablo MartinC. ELEGANSCONNECTOMEROBOTSELF-ORGANIZED SYSTEMSSYNCHRONIZATIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We analyze the neural dynamics and their relation with the emergent actions of a robotic vehicle that is controlled by a neural network numerical simulation based on the nervous system of the nematode Caenorhabditis elegans. The robot interacts with the environment through a sensor that transmits the information to sensory neurons, while motor neurons outputs are connected to wheels. This is enough to allow emergent robot actions in complex environments, such as avoiding collisions with obstacles. Working with robotic models makes it possible to simultaneously keep track of the dynamics of all the neurons and also register the actions of the robot in the environment in real time, while avoiding the complex technicalities of simulating a real environment. This allowed us to identify several relevant features of the neural dynamics associated with the emergent actions of the robot, some of which have already been observed in biological worms. These results suggest that some basic aspects of behaviors observed in living beings are determined by the underlying structure of the associated neural network.Fil: Valencia Urbina, Carlos Eduardo. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Cannas, Sergio Alejandro. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Gleiser, Pablo Martin. Instituto Tecnológico de Buenos Aires; Argentina. Universidad Nacional de Córdoba; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; ArgentinaFrontiers Media S.A.2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219000Valencia Urbina, Carlos Eduardo; Cannas, Sergio Alejandro; Gleiser, Pablo Martin; Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome; Frontiers Media S.A.; Frontiers in Neurorobotics; 16; 1-2023; 1-101662-5218CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3389/fnbot.2022.1041410info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnbot.2022.1041410/fullinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:47:58Zoai:ri.conicet.gov.ar:11336/219000instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:47:58.865CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome
title Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome
spellingShingle Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome
Valencia Urbina, Carlos Eduardo
C. ELEGANS
CONNECTOME
ROBOT
SELF-ORGANIZED SYSTEMS
SYNCHRONIZATION
title_short Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome
title_full Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome
title_fullStr Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome
title_full_unstemmed Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome
title_sort Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome
dc.creator.none.fl_str_mv Valencia Urbina, Carlos Eduardo
Cannas, Sergio Alejandro
Gleiser, Pablo Martin
author Valencia Urbina, Carlos Eduardo
author_facet Valencia Urbina, Carlos Eduardo
Cannas, Sergio Alejandro
Gleiser, Pablo Martin
author_role author
author2 Cannas, Sergio Alejandro
Gleiser, Pablo Martin
author2_role author
author
dc.subject.none.fl_str_mv C. ELEGANS
CONNECTOME
ROBOT
SELF-ORGANIZED SYSTEMS
SYNCHRONIZATION
topic C. ELEGANS
CONNECTOME
ROBOT
SELF-ORGANIZED SYSTEMS
SYNCHRONIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We analyze the neural dynamics and their relation with the emergent actions of a robotic vehicle that is controlled by a neural network numerical simulation based on the nervous system of the nematode Caenorhabditis elegans. The robot interacts with the environment through a sensor that transmits the information to sensory neurons, while motor neurons outputs are connected to wheels. This is enough to allow emergent robot actions in complex environments, such as avoiding collisions with obstacles. Working with robotic models makes it possible to simultaneously keep track of the dynamics of all the neurons and also register the actions of the robot in the environment in real time, while avoiding the complex technicalities of simulating a real environment. This allowed us to identify several relevant features of the neural dynamics associated with the emergent actions of the robot, some of which have already been observed in biological worms. These results suggest that some basic aspects of behaviors observed in living beings are determined by the underlying structure of the associated neural network.
Fil: Valencia Urbina, Carlos Eduardo. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Cannas, Sergio Alejandro. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Gleiser, Pablo Martin. Instituto Tecnológico de Buenos Aires; Argentina. Universidad Nacional de Córdoba; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área Investigaciones y Aplicaciones no Nucleares; Argentina
description We analyze the neural dynamics and their relation with the emergent actions of a robotic vehicle that is controlled by a neural network numerical simulation based on the nervous system of the nematode Caenorhabditis elegans. The robot interacts with the environment through a sensor that transmits the information to sensory neurons, while motor neurons outputs are connected to wheels. This is enough to allow emergent robot actions in complex environments, such as avoiding collisions with obstacles. Working with robotic models makes it possible to simultaneously keep track of the dynamics of all the neurons and also register the actions of the robot in the environment in real time, while avoiding the complex technicalities of simulating a real environment. This allowed us to identify several relevant features of the neural dynamics associated with the emergent actions of the robot, some of which have already been observed in biological worms. These results suggest that some basic aspects of behaviors observed in living beings are determined by the underlying structure of the associated neural network.
publishDate 2023
dc.date.none.fl_str_mv 2023-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/219000
Valencia Urbina, Carlos Eduardo; Cannas, Sergio Alejandro; Gleiser, Pablo Martin; Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome; Frontiers Media S.A.; Frontiers in Neurorobotics; 16; 1-2023; 1-10
1662-5218
CONICET Digital
CONICET
url http://hdl.handle.net/11336/219000
identifier_str_mv Valencia Urbina, Carlos Eduardo; Cannas, Sergio Alejandro; Gleiser, Pablo Martin; Emergent dynamics in a robotic model based on the Caenorhabditis elegans connectome; Frontiers Media S.A.; Frontiers in Neurorobotics; 16; 1-2023; 1-10
1662-5218
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.3389/fnbot.2022.1041410
info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/fnbot.2022.1041410/full
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media S.A.
publisher.none.fl_str_mv Frontiers Media S.A.
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082997925707776
score 13.22299