Quantum physics for deep tissue magnetic resonance imaging

Autores
Zwick, Analía Elizabeth
Año de publicación
2022
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Quantum physics for deep tissue magnetic resonance imagingThe development of quantum technologies is an area expected to revolutionize medical diagnosis by taking advantage of quantum information processing to improve devices, such as sensors. Quantum sensors will serve applications ranging from thermometry to diagnostic imaging with sub-micrometer resolutions [1-5]. The current spatial resolution of non-invasive in-vivo magnetic resonance imaging (MRI) is limited to a scale of millimeters in conventional imaging modalities. However, relevant tissue microstructure details and processes linked to disease occur at molecular and microstructural scales governed by the laws of quantum physics. We use nuclear spins of molecules intrinsic to biological systems (e.g. water protons) as quantum sensors of their environment and control them with magnetic resonance techniques to characterize quantitatively the underlying microstructure efficiently in time and precision [1,5-8]. We exploit fundamental concepts of quantum mechanics developed within the area of quantum information sciences, as quantum-control and -information theory tools to non-invasively quantify deep tissue-microstructure parameters such as cell-sizes or axon diameters [5-6]. This allows us to resolve structures with length scales that are about 100 times smaller than the actual imaging resolution.
Fil: Zwick, Analía Elizabeth. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Quantum Matter International Conference 2022
España
Phantoms Foundation
Materia
NMR MRI
quantum sensing
quantum information
quantum control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/268876

id CONICETDig_bcb38f4e4c0b520447295afc7e5a9c8e
oai_identifier_str oai:ri.conicet.gov.ar:11336/268876
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantum physics for deep tissue magnetic resonance imagingZwick, Analía ElizabethNMR MRIquantum sensingquantum informationquantum controlhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Quantum physics for deep tissue magnetic resonance imagingThe development of quantum technologies is an area expected to revolutionize medical diagnosis by taking advantage of quantum information processing to improve devices, such as sensors. Quantum sensors will serve applications ranging from thermometry to diagnostic imaging with sub-micrometer resolutions [1-5]. The current spatial resolution of non-invasive in-vivo magnetic resonance imaging (MRI) is limited to a scale of millimeters in conventional imaging modalities. However, relevant tissue microstructure details and processes linked to disease occur at molecular and microstructural scales governed by the laws of quantum physics. We use nuclear spins of molecules intrinsic to biological systems (e.g. water protons) as quantum sensors of their environment and control them with magnetic resonance techniques to characterize quantitatively the underlying microstructure efficiently in time and precision [1,5-8]. We exploit fundamental concepts of quantum mechanics developed within the area of quantum information sciences, as quantum-control and -information theory tools to non-invasively quantify deep tissue-microstructure parameters such as cell-sizes or axon diameters [5-6]. This allows us to resolve structures with length scales that are about 100 times smaller than the actual imaging resolution.Fil: Zwick, Analía Elizabeth. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaQuantum Matter International Conference 2022EspañaPhantoms FoundationPhantoms Foundation2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/268876Quantum physics for deep tissue magnetic resonance imaging; Quantum Matter International Conference 2022; España; 2022; 1-1CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://quantumconf.eu/2022/posters.php#PostersInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:52Zoai:ri.conicet.gov.ar:11336/268876instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:52.34CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantum physics for deep tissue magnetic resonance imaging
title Quantum physics for deep tissue magnetic resonance imaging
spellingShingle Quantum physics for deep tissue magnetic resonance imaging
Zwick, Analía Elizabeth
NMR MRI
quantum sensing
quantum information
quantum control
title_short Quantum physics for deep tissue magnetic resonance imaging
title_full Quantum physics for deep tissue magnetic resonance imaging
title_fullStr Quantum physics for deep tissue magnetic resonance imaging
title_full_unstemmed Quantum physics for deep tissue magnetic resonance imaging
title_sort Quantum physics for deep tissue magnetic resonance imaging
dc.creator.none.fl_str_mv Zwick, Analía Elizabeth
author Zwick, Analía Elizabeth
author_facet Zwick, Analía Elizabeth
author_role author
dc.subject.none.fl_str_mv NMR MRI
quantum sensing
quantum information
quantum control
topic NMR MRI
quantum sensing
quantum information
quantum control
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Quantum physics for deep tissue magnetic resonance imagingThe development of quantum technologies is an area expected to revolutionize medical diagnosis by taking advantage of quantum information processing to improve devices, such as sensors. Quantum sensors will serve applications ranging from thermometry to diagnostic imaging with sub-micrometer resolutions [1-5]. The current spatial resolution of non-invasive in-vivo magnetic resonance imaging (MRI) is limited to a scale of millimeters in conventional imaging modalities. However, relevant tissue microstructure details and processes linked to disease occur at molecular and microstructural scales governed by the laws of quantum physics. We use nuclear spins of molecules intrinsic to biological systems (e.g. water protons) as quantum sensors of their environment and control them with magnetic resonance techniques to characterize quantitatively the underlying microstructure efficiently in time and precision [1,5-8]. We exploit fundamental concepts of quantum mechanics developed within the area of quantum information sciences, as quantum-control and -information theory tools to non-invasively quantify deep tissue-microstructure parameters such as cell-sizes or axon diameters [5-6]. This allows us to resolve structures with length scales that are about 100 times smaller than the actual imaging resolution.
Fil: Zwick, Analía Elizabeth. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Quantum Matter International Conference 2022
España
Phantoms Foundation
description Quantum physics for deep tissue magnetic resonance imagingThe development of quantum technologies is an area expected to revolutionize medical diagnosis by taking advantage of quantum information processing to improve devices, such as sensors. Quantum sensors will serve applications ranging from thermometry to diagnostic imaging with sub-micrometer resolutions [1-5]. The current spatial resolution of non-invasive in-vivo magnetic resonance imaging (MRI) is limited to a scale of millimeters in conventional imaging modalities. However, relevant tissue microstructure details and processes linked to disease occur at molecular and microstructural scales governed by the laws of quantum physics. We use nuclear spins of molecules intrinsic to biological systems (e.g. water protons) as quantum sensors of their environment and control them with magnetic resonance techniques to characterize quantitatively the underlying microstructure efficiently in time and precision [1,5-8]. We exploit fundamental concepts of quantum mechanics developed within the area of quantum information sciences, as quantum-control and -information theory tools to non-invasively quantify deep tissue-microstructure parameters such as cell-sizes or axon diameters [5-6]. This allows us to resolve structures with length scales that are about 100 times smaller than the actual imaging resolution.
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Conferencia
Journal
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/268876
Quantum physics for deep tissue magnetic resonance imaging; Quantum Matter International Conference 2022; España; 2022; 1-1
CONICET Digital
CONICET
url http://hdl.handle.net/11336/268876
identifier_str_mv Quantum physics for deep tissue magnetic resonance imaging; Quantum Matter International Conference 2022; España; 2022; 1-1
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://quantumconf.eu/2022/posters.php#Posters
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Phantoms Foundation
publisher.none.fl_str_mv Phantoms Foundation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270021330403328
score 12.885934