Quantum physics for deep tissue magnetic resonance imaging
- Autores
- Zwick, Analía Elizabeth
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Quantum physics for deep tissue magnetic resonance imagingThe development of quantum technologies is an area expected to revolutionize medical diagnosis by taking advantage of quantum information processing to improve devices, such as sensors. Quantum sensors will serve applications ranging from thermometry to diagnostic imaging with sub-micrometer resolutions [1-5]. The current spatial resolution of non-invasive in-vivo magnetic resonance imaging (MRI) is limited to a scale of millimeters in conventional imaging modalities. However, relevant tissue microstructure details and processes linked to disease occur at molecular and microstructural scales governed by the laws of quantum physics. We use nuclear spins of molecules intrinsic to biological systems (e.g. water protons) as quantum sensors of their environment and control them with magnetic resonance techniques to characterize quantitatively the underlying microstructure efficiently in time and precision [1,5-8]. We exploit fundamental concepts of quantum mechanics developed within the area of quantum information sciences, as quantum-control and -information theory tools to non-invasively quantify deep tissue-microstructure parameters such as cell-sizes or axon diameters [5-6]. This allows us to resolve structures with length scales that are about 100 times smaller than the actual imaging resolution.
Fil: Zwick, Analía Elizabeth. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Quantum Matter International Conference 2022
España
Phantoms Foundation - Materia
-
NMR MRI
quantum sensing
quantum information
quantum control - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/268876
Ver los metadatos del registro completo
id |
CONICETDig_bcb38f4e4c0b520447295afc7e5a9c8e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/268876 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantum physics for deep tissue magnetic resonance imagingZwick, Analía ElizabethNMR MRIquantum sensingquantum informationquantum controlhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Quantum physics for deep tissue magnetic resonance imagingThe development of quantum technologies is an area expected to revolutionize medical diagnosis by taking advantage of quantum information processing to improve devices, such as sensors. Quantum sensors will serve applications ranging from thermometry to diagnostic imaging with sub-micrometer resolutions [1-5]. The current spatial resolution of non-invasive in-vivo magnetic resonance imaging (MRI) is limited to a scale of millimeters in conventional imaging modalities. However, relevant tissue microstructure details and processes linked to disease occur at molecular and microstructural scales governed by the laws of quantum physics. We use nuclear spins of molecules intrinsic to biological systems (e.g. water protons) as quantum sensors of their environment and control them with magnetic resonance techniques to characterize quantitatively the underlying microstructure efficiently in time and precision [1,5-8]. We exploit fundamental concepts of quantum mechanics developed within the area of quantum information sciences, as quantum-control and -information theory tools to non-invasively quantify deep tissue-microstructure parameters such as cell-sizes or axon diameters [5-6]. This allows us to resolve structures with length scales that are about 100 times smaller than the actual imaging resolution.Fil: Zwick, Analía Elizabeth. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaQuantum Matter International Conference 2022EspañaPhantoms FoundationPhantoms Foundation2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/268876Quantum physics for deep tissue magnetic resonance imaging; Quantum Matter International Conference 2022; España; 2022; 1-1CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://quantumconf.eu/2022/posters.php#PostersInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:52Zoai:ri.conicet.gov.ar:11336/268876instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:52.34CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantum physics for deep tissue magnetic resonance imaging |
title |
Quantum physics for deep tissue magnetic resonance imaging |
spellingShingle |
Quantum physics for deep tissue magnetic resonance imaging Zwick, Analía Elizabeth NMR MRI quantum sensing quantum information quantum control |
title_short |
Quantum physics for deep tissue magnetic resonance imaging |
title_full |
Quantum physics for deep tissue magnetic resonance imaging |
title_fullStr |
Quantum physics for deep tissue magnetic resonance imaging |
title_full_unstemmed |
Quantum physics for deep tissue magnetic resonance imaging |
title_sort |
Quantum physics for deep tissue magnetic resonance imaging |
dc.creator.none.fl_str_mv |
Zwick, Analía Elizabeth |
author |
Zwick, Analía Elizabeth |
author_facet |
Zwick, Analía Elizabeth |
author_role |
author |
dc.subject.none.fl_str_mv |
NMR MRI quantum sensing quantum information quantum control |
topic |
NMR MRI quantum sensing quantum information quantum control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Quantum physics for deep tissue magnetic resonance imagingThe development of quantum technologies is an area expected to revolutionize medical diagnosis by taking advantage of quantum information processing to improve devices, such as sensors. Quantum sensors will serve applications ranging from thermometry to diagnostic imaging with sub-micrometer resolutions [1-5]. The current spatial resolution of non-invasive in-vivo magnetic resonance imaging (MRI) is limited to a scale of millimeters in conventional imaging modalities. However, relevant tissue microstructure details and processes linked to disease occur at molecular and microstructural scales governed by the laws of quantum physics. We use nuclear spins of molecules intrinsic to biological systems (e.g. water protons) as quantum sensors of their environment and control them with magnetic resonance techniques to characterize quantitatively the underlying microstructure efficiently in time and precision [1,5-8]. We exploit fundamental concepts of quantum mechanics developed within the area of quantum information sciences, as quantum-control and -information theory tools to non-invasively quantify deep tissue-microstructure parameters such as cell-sizes or axon diameters [5-6]. This allows us to resolve structures with length scales that are about 100 times smaller than the actual imaging resolution. Fil: Zwick, Analía Elizabeth. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Bariloche.; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Quantum Matter International Conference 2022 España Phantoms Foundation |
description |
Quantum physics for deep tissue magnetic resonance imagingThe development of quantum technologies is an area expected to revolutionize medical diagnosis by taking advantage of quantum information processing to improve devices, such as sensors. Quantum sensors will serve applications ranging from thermometry to diagnostic imaging with sub-micrometer resolutions [1-5]. The current spatial resolution of non-invasive in-vivo magnetic resonance imaging (MRI) is limited to a scale of millimeters in conventional imaging modalities. However, relevant tissue microstructure details and processes linked to disease occur at molecular and microstructural scales governed by the laws of quantum physics. We use nuclear spins of molecules intrinsic to biological systems (e.g. water protons) as quantum sensors of their environment and control them with magnetic resonance techniques to characterize quantitatively the underlying microstructure efficiently in time and precision [1,5-8]. We exploit fundamental concepts of quantum mechanics developed within the area of quantum information sciences, as quantum-control and -information theory tools to non-invasively quantify deep tissue-microstructure parameters such as cell-sizes or axon diameters [5-6]. This allows us to resolve structures with length scales that are about 100 times smaller than the actual imaging resolution. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/268876 Quantum physics for deep tissue magnetic resonance imaging; Quantum Matter International Conference 2022; España; 2022; 1-1 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/268876 |
identifier_str_mv |
Quantum physics for deep tissue magnetic resonance imaging; Quantum Matter International Conference 2022; España; 2022; 1-1 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://quantumconf.eu/2022/posters.php#Posters |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Phantoms Foundation |
publisher.none.fl_str_mv |
Phantoms Foundation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270021330403328 |
score |
12.885934 |