Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking
- Autores
- Wang, Wenxu; Marelli, Damian Edgardo; Fu, Minyue
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Indoor positioning using Wi-Fi signals is an economic technique. Its drawback is that multipath propagation distorts these signals, leading to an inaccurate localization. An approach to improve the positioning accuracy consists of using fingerprints based on channel state information (CSI). Following this line, we propose a new positioning method which consists of three stages. In the first stage, which is run during initialization, we build a model for the fingerprints of the environment in which we do localization. This model permits obtaining a precise interpolation of fingerprints at positions where a fingerprint measurement is not available. In the second stage, we use this model to obtain a preliminary position estimate based only on the fingerprint measured at the receiver’s location. Finally, in the third stage, we combine this preliminary estimation with the dynamical model of the receiver’s motion to obtain the final estimation. We compare the localization accuracy of the proposed method with other rival methods in two scenarios, namely, when fingerprints used for localization are similar to those used for initialization, and when they differ due to alterations in the environment. Our experiments show that the proposed method outperforms its rivals in both scenarios.
Fil: Wang, Wenxu. Guandong University Of Technology; China
Fil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Fu, Minyue. Universidad de Newcastle; Australia - Materia
-
BAYESIAN TRACKING
CSI
FINGERPRINTING
INDOOR LOCALIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/183504
Ver los metadatos del registro completo
id |
CONICETDig_bc573f5ef74dd0ac7779db04cfbdc594 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/183504 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian trackingWang, WenxuMarelli, Damian EdgardoFu, MinyueBAYESIAN TRACKINGCSIFINGERPRINTINGINDOOR LOCALIZATIONhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Indoor positioning using Wi-Fi signals is an economic technique. Its drawback is that multipath propagation distorts these signals, leading to an inaccurate localization. An approach to improve the positioning accuracy consists of using fingerprints based on channel state information (CSI). Following this line, we propose a new positioning method which consists of three stages. In the first stage, which is run during initialization, we build a model for the fingerprints of the environment in which we do localization. This model permits obtaining a precise interpolation of fingerprints at positions where a fingerprint measurement is not available. In the second stage, we use this model to obtain a preliminary position estimate based only on the fingerprint measured at the receiver’s location. Finally, in the third stage, we combine this preliminary estimation with the dynamical model of the receiver’s motion to obtain the final estimation. We compare the localization accuracy of the proposed method with other rival methods in two scenarios, namely, when fingerprints used for localization are similar to those used for initialization, and when they differ due to alterations in the environment. Our experiments show that the proposed method outperforms its rivals in both scenarios.Fil: Wang, Wenxu. Guandong University Of Technology; ChinaFil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Fu, Minyue. Universidad de Newcastle; AustraliaMolecular Diversity Preservation International2020-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/183504Wang, Wenxu; Marelli, Damian Edgardo; Fu, Minyue; Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking; Molecular Diversity Preservation International; Sensors; 20; 10; 7-2020; 1-151424-8220CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.3390/s20102854info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:50Zoai:ri.conicet.gov.ar:11336/183504instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:50.515CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking |
title |
Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking |
spellingShingle |
Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking Wang, Wenxu BAYESIAN TRACKING CSI FINGERPRINTING INDOOR LOCALIZATION |
title_short |
Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking |
title_full |
Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking |
title_fullStr |
Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking |
title_full_unstemmed |
Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking |
title_sort |
Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking |
dc.creator.none.fl_str_mv |
Wang, Wenxu Marelli, Damian Edgardo Fu, Minyue |
author |
Wang, Wenxu |
author_facet |
Wang, Wenxu Marelli, Damian Edgardo Fu, Minyue |
author_role |
author |
author2 |
Marelli, Damian Edgardo Fu, Minyue |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BAYESIAN TRACKING CSI FINGERPRINTING INDOOR LOCALIZATION |
topic |
BAYESIAN TRACKING CSI FINGERPRINTING INDOOR LOCALIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Indoor positioning using Wi-Fi signals is an economic technique. Its drawback is that multipath propagation distorts these signals, leading to an inaccurate localization. An approach to improve the positioning accuracy consists of using fingerprints based on channel state information (CSI). Following this line, we propose a new positioning method which consists of three stages. In the first stage, which is run during initialization, we build a model for the fingerprints of the environment in which we do localization. This model permits obtaining a precise interpolation of fingerprints at positions where a fingerprint measurement is not available. In the second stage, we use this model to obtain a preliminary position estimate based only on the fingerprint measured at the receiver’s location. Finally, in the third stage, we combine this preliminary estimation with the dynamical model of the receiver’s motion to obtain the final estimation. We compare the localization accuracy of the proposed method with other rival methods in two scenarios, namely, when fingerprints used for localization are similar to those used for initialization, and when they differ due to alterations in the environment. Our experiments show that the proposed method outperforms its rivals in both scenarios. Fil: Wang, Wenxu. Guandong University Of Technology; China Fil: Marelli, Damian Edgardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Fu, Minyue. Universidad de Newcastle; Australia |
description |
Indoor positioning using Wi-Fi signals is an economic technique. Its drawback is that multipath propagation distorts these signals, leading to an inaccurate localization. An approach to improve the positioning accuracy consists of using fingerprints based on channel state information (CSI). Following this line, we propose a new positioning method which consists of three stages. In the first stage, which is run during initialization, we build a model for the fingerprints of the environment in which we do localization. This model permits obtaining a precise interpolation of fingerprints at positions where a fingerprint measurement is not available. In the second stage, we use this model to obtain a preliminary position estimate based only on the fingerprint measured at the receiver’s location. Finally, in the third stage, we combine this preliminary estimation with the dynamical model of the receiver’s motion to obtain the final estimation. We compare the localization accuracy of the proposed method with other rival methods in two scenarios, namely, when fingerprints used for localization are similar to those used for initialization, and when they differ due to alterations in the environment. Our experiments show that the proposed method outperforms its rivals in both scenarios. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/183504 Wang, Wenxu; Marelli, Damian Edgardo; Fu, Minyue; Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking; Molecular Diversity Preservation International; Sensors; 20; 10; 7-2020; 1-15 1424-8220 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/183504 |
identifier_str_mv |
Wang, Wenxu; Marelli, Damian Edgardo; Fu, Minyue; Fingerprinting-based indoor localization using interpolated preprocessed csi phases and bayesian tracking; Molecular Diversity Preservation International; Sensors; 20; 10; 7-2020; 1-15 1424-8220 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.3390/s20102854 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613433124716544 |
score |
13.070432 |