A tracking framework for accurate face localization
- Autores
- Pitas, Ioannis; Cherif, Ines; Solachidis, Vassilios
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- This paper proposes a complete framework for accurate face localization on video frames. Detection and forward tracking are first combined according to predefined rules to get a first set of face candidates. Backward tracking is then applied to provide another set of possible localizations. Finally a dynamic programming algorithm is used to select the candidates that minimize a specific cost function. This method was designed to handle different scale, pose and lighting conditions. The experiments show that it improves the face detection rate compared to a frame-based detector and provides a higher precision than a forward information-based tracker.
IFIP International Conference on Artificial Intelligence in Theory and Practice - Machine Vision
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Tracking
Dynamic programming
Video analysis - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/23951
Ver los metadatos del registro completo
id |
SEDICI_0d337bb40938017363e7f4514d19da40 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/23951 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
A tracking framework for accurate face localizationPitas, IoannisCherif, InesSolachidis, VassiliosCiencias InformáticasTrackingDynamic programmingVideo analysisThis paper proposes a complete framework for accurate face localization on video frames. Detection and forward tracking are first combined according to predefined rules to get a first set of face candidates. Backward tracking is then applied to provide another set of possible localizations. Finally a dynamic programming algorithm is used to select the candidates that minimize a specific cost function. This method was designed to handle different scale, pose and lighting conditions. The experiments show that it improves the face detection rate compared to a frame-based detector and provides a higher precision than a forward information-based tracker.IFIP International Conference on Artificial Intelligence in Theory and Practice - Machine VisionRed de Universidades con Carreras en Informática (RedUNCI)2006-08info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/23951enginfo:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-17T09:39:04Zoai:sedici.unlp.edu.ar:10915/23951Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-17 09:39:04.277SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
A tracking framework for accurate face localization |
title |
A tracking framework for accurate face localization |
spellingShingle |
A tracking framework for accurate face localization Pitas, Ioannis Ciencias Informáticas Tracking Dynamic programming Video analysis |
title_short |
A tracking framework for accurate face localization |
title_full |
A tracking framework for accurate face localization |
title_fullStr |
A tracking framework for accurate face localization |
title_full_unstemmed |
A tracking framework for accurate face localization |
title_sort |
A tracking framework for accurate face localization |
dc.creator.none.fl_str_mv |
Pitas, Ioannis Cherif, Ines Solachidis, Vassilios |
author |
Pitas, Ioannis |
author_facet |
Pitas, Ioannis Cherif, Ines Solachidis, Vassilios |
author_role |
author |
author2 |
Cherif, Ines Solachidis, Vassilios |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas Tracking Dynamic programming Video analysis |
topic |
Ciencias Informáticas Tracking Dynamic programming Video analysis |
dc.description.none.fl_txt_mv |
This paper proposes a complete framework for accurate face localization on video frames. Detection and forward tracking are first combined according to predefined rules to get a first set of face candidates. Backward tracking is then applied to provide another set of possible localizations. Finally a dynamic programming algorithm is used to select the candidates that minimize a specific cost function. This method was designed to handle different scale, pose and lighting conditions. The experiments show that it improves the face detection rate compared to a frame-based detector and provides a higher precision than a forward information-based tracker. IFIP International Conference on Artificial Intelligence in Theory and Practice - Machine Vision Red de Universidades con Carreras en Informática (RedUNCI) |
description |
This paper proposes a complete framework for accurate face localization on video frames. Detection and forward tracking are first combined according to predefined rules to get a first set of face candidates. Backward tracking is then applied to provide another set of possible localizations. Finally a dynamic programming algorithm is used to select the candidates that minimize a specific cost function. This method was designed to handle different scale, pose and lighting conditions. The experiments show that it improves the face detection rate compared to a frame-based detector and provides a higher precision than a forward information-based tracker. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/23951 |
url |
http://sedici.unlp.edu.ar/handle/10915/23951 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/0-387-34654-6 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1843532060452454400 |
score |
13.001348 |