Maximal domain of preferences in the division problem
- Autores
- Neme, Alejandro José; Jordi, Massó Carreras
- Año de publicación
- 2001
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The division problem consists of allocating an amount of a perfectly divisible good among a group of n agents. Sprumont (1991) showed that if agents have single-peaked preferences over their shares, then the uniform allocation rule is the unique strategy-proof, efficient, and anonymous rule. We identify the maximal set of preferences, containing the set of single-peaked preferences, under which there exists at least one rule satisfying the properties of strategy-proofness, efficiency, and strong symmetry. In addition, we show that our characterization implies a slightly weaker version of Ching and Serizawa's (1998) result. Journal of Economic Literature Classification Numbers: D71, D78, D63.
Fil: Neme, Alejandro José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina
Fil: Jordi, Massó Carreras. Universitat Autònoma de Barcelona; España - Materia
-
MAXIMAL DOMAIN
PREFERENCE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/118411
Ver los metadatos del registro completo
id |
CONICETDig_bb69c9258e6d45dd3260808142cfd649 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/118411 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Maximal domain of preferences in the division problemNeme, Alejandro JoséJordi, Massó CarrerasMAXIMAL DOMAINPREFERENCEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The division problem consists of allocating an amount of a perfectly divisible good among a group of n agents. Sprumont (1991) showed that if agents have single-peaked preferences over their shares, then the uniform allocation rule is the unique strategy-proof, efficient, and anonymous rule. We identify the maximal set of preferences, containing the set of single-peaked preferences, under which there exists at least one rule satisfying the properties of strategy-proofness, efficiency, and strong symmetry. In addition, we show that our characterization implies a slightly weaker version of Ching and Serizawa's (1998) result. Journal of Economic Literature Classification Numbers: D71, D78, D63.Fil: Neme, Alejandro José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Jordi, Massó Carreras. Universitat Autònoma de Barcelona; EspañaElsevier2001-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/118411Neme, Alejandro José; Jordi, Massó Carreras; Maximal domain of preferences in the division problem; Elsevier; Games and Economic Behavior; 37; 2; 12-2001; 367-3870899-8256CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0899825601908504info:eu-repo/semantics/altIdentifier/doi/10.1006/game.2001.0850info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:52:42Zoai:ri.conicet.gov.ar:11336/118411instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:52:42.769CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Maximal domain of preferences in the division problem |
title |
Maximal domain of preferences in the division problem |
spellingShingle |
Maximal domain of preferences in the division problem Neme, Alejandro José MAXIMAL DOMAIN PREFERENCE |
title_short |
Maximal domain of preferences in the division problem |
title_full |
Maximal domain of preferences in the division problem |
title_fullStr |
Maximal domain of preferences in the division problem |
title_full_unstemmed |
Maximal domain of preferences in the division problem |
title_sort |
Maximal domain of preferences in the division problem |
dc.creator.none.fl_str_mv |
Neme, Alejandro José Jordi, Massó Carreras |
author |
Neme, Alejandro José |
author_facet |
Neme, Alejandro José Jordi, Massó Carreras |
author_role |
author |
author2 |
Jordi, Massó Carreras |
author2_role |
author |
dc.subject.none.fl_str_mv |
MAXIMAL DOMAIN PREFERENCE |
topic |
MAXIMAL DOMAIN PREFERENCE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The division problem consists of allocating an amount of a perfectly divisible good among a group of n agents. Sprumont (1991) showed that if agents have single-peaked preferences over their shares, then the uniform allocation rule is the unique strategy-proof, efficient, and anonymous rule. We identify the maximal set of preferences, containing the set of single-peaked preferences, under which there exists at least one rule satisfying the properties of strategy-proofness, efficiency, and strong symmetry. In addition, we show that our characterization implies a slightly weaker version of Ching and Serizawa's (1998) result. Journal of Economic Literature Classification Numbers: D71, D78, D63. Fil: Neme, Alejandro José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentina Fil: Jordi, Massó Carreras. Universitat Autònoma de Barcelona; España |
description |
The division problem consists of allocating an amount of a perfectly divisible good among a group of n agents. Sprumont (1991) showed that if agents have single-peaked preferences over their shares, then the uniform allocation rule is the unique strategy-proof, efficient, and anonymous rule. We identify the maximal set of preferences, containing the set of single-peaked preferences, under which there exists at least one rule satisfying the properties of strategy-proofness, efficiency, and strong symmetry. In addition, we show that our characterization implies a slightly weaker version of Ching and Serizawa's (1998) result. Journal of Economic Literature Classification Numbers: D71, D78, D63. |
publishDate |
2001 |
dc.date.none.fl_str_mv |
2001-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/118411 Neme, Alejandro José; Jordi, Massó Carreras; Maximal domain of preferences in the division problem; Elsevier; Games and Economic Behavior; 37; 2; 12-2001; 367-387 0899-8256 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/118411 |
identifier_str_mv |
Neme, Alejandro José; Jordi, Massó Carreras; Maximal domain of preferences in the division problem; Elsevier; Games and Economic Behavior; 37; 2; 12-2001; 367-387 0899-8256 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0899825601908504 info:eu-repo/semantics/altIdentifier/doi/10.1006/game.2001.0850 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083055941320704 |
score |
13.22299 |