Affinity and distance. On the Newtonian structure of some data kernels
- Autores
- Aimar, Hugo Alejandro; Gomez, Ivana Daniela
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let X be a set. Let K(x, y) > 0 be a measure of the affinity between the data points x and y. We prove that K has the structure of a Newtonian potential K(x, y) = φ(d(x, y)) with φ decreasing and d a quasi-metric on X under two mild conditions on K. The first is that the affinity of each x to itself is infinite and that for x ≠ y the affinity is positive and finite. The second is a quantitative transitivity; if the affinity between x and y is larger than λ > 0 and the affinity of y and z is also larger than λ, then the affinity between x and z is larger than ν(λ). The function ν is concave, increasing, continuous from R+ onto R+ with ν(λ) < λ for every λ >0.
Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina - Materia
-
AFFINITY KERNEL
METRIC SPACES
UNIFORM SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88699
Ver los metadatos del registro completo
| id |
CONICETDig_baebe7e805e9ceaafa132d20613515d7 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88699 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Affinity and distance. On the Newtonian structure of some data kernelsAimar, Hugo AlejandroGomez, Ivana DanielaAFFINITY KERNELMETRIC SPACESUNIFORM SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let X be a set. Let K(x, y) > 0 be a measure of the affinity between the data points x and y. We prove that K has the structure of a Newtonian potential K(x, y) = φ(d(x, y)) with φ decreasing and d a quasi-metric on X under two mild conditions on K. The first is that the affinity of each x to itself is infinite and that for x ≠ y the affinity is positive and finite. The second is a quantitative transitivity; if the affinity between x and y is larger than λ > 0 and the affinity of y and z is also larger than λ, then the affinity between x and z is larger than ν(λ). The function ν is concave, increasing, continuous from R+ onto R+ with ν(λ) < λ for every λ >0.Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaDe Gruyter Open Ltd2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88699Aimar, Hugo Alejandro; Gomez, Ivana Daniela; Affinity and distance. On the Newtonian structure of some data kernels; De Gruyter Open Ltd; Analysis and Geometry in Metric Spaces; 6; 1; 2-2018; 89-952299-32742299-3274CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/agms.2018.6.issue-1/agms-2018-0005/agms-2018-0005.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/agms-2018-0005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:59:20Zoai:ri.conicet.gov.ar:11336/88699instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:59:21.019CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Affinity and distance. On the Newtonian structure of some data kernels |
| title |
Affinity and distance. On the Newtonian structure of some data kernels |
| spellingShingle |
Affinity and distance. On the Newtonian structure of some data kernels Aimar, Hugo Alejandro AFFINITY KERNEL METRIC SPACES UNIFORM SPACES |
| title_short |
Affinity and distance. On the Newtonian structure of some data kernels |
| title_full |
Affinity and distance. On the Newtonian structure of some data kernels |
| title_fullStr |
Affinity and distance. On the Newtonian structure of some data kernels |
| title_full_unstemmed |
Affinity and distance. On the Newtonian structure of some data kernels |
| title_sort |
Affinity and distance. On the Newtonian structure of some data kernels |
| dc.creator.none.fl_str_mv |
Aimar, Hugo Alejandro Gomez, Ivana Daniela |
| author |
Aimar, Hugo Alejandro |
| author_facet |
Aimar, Hugo Alejandro Gomez, Ivana Daniela |
| author_role |
author |
| author2 |
Gomez, Ivana Daniela |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
AFFINITY KERNEL METRIC SPACES UNIFORM SPACES |
| topic |
AFFINITY KERNEL METRIC SPACES UNIFORM SPACES |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Let X be a set. Let K(x, y) > 0 be a measure of the affinity between the data points x and y. We prove that K has the structure of a Newtonian potential K(x, y) = φ(d(x, y)) with φ decreasing and d a quasi-metric on X under two mild conditions on K. The first is that the affinity of each x to itself is infinite and that for x ≠ y the affinity is positive and finite. The second is a quantitative transitivity; if the affinity between x and y is larger than λ > 0 and the affinity of y and z is also larger than λ, then the affinity between x and z is larger than ν(λ). The function ν is concave, increasing, continuous from R+ onto R+ with ν(λ) < λ for every λ >0. Fil: Aimar, Hugo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Gomez, Ivana Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina |
| description |
Let X be a set. Let K(x, y) > 0 be a measure of the affinity between the data points x and y. We prove that K has the structure of a Newtonian potential K(x, y) = φ(d(x, y)) with φ decreasing and d a quasi-metric on X under two mild conditions on K. The first is that the affinity of each x to itself is infinite and that for x ≠ y the affinity is positive and finite. The second is a quantitative transitivity; if the affinity between x and y is larger than λ > 0 and the affinity of y and z is also larger than λ, then the affinity between x and z is larger than ν(λ). The function ν is concave, increasing, continuous from R+ onto R+ with ν(λ) < λ for every λ >0. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88699 Aimar, Hugo Alejandro; Gomez, Ivana Daniela; Affinity and distance. On the Newtonian structure of some data kernels; De Gruyter Open Ltd; Analysis and Geometry in Metric Spaces; 6; 1; 2-2018; 89-95 2299-3274 2299-3274 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/88699 |
| identifier_str_mv |
Aimar, Hugo Alejandro; Gomez, Ivana Daniela; Affinity and distance. On the Newtonian structure of some data kernels; De Gruyter Open Ltd; Analysis and Geometry in Metric Spaces; 6; 1; 2-2018; 89-95 2299-3274 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.degruyter.com/view/j/agms.2018.6.issue-1/agms-2018-0005/agms-2018-0005.xml info:eu-repo/semantics/altIdentifier/doi/10.1515/agms-2018-0005 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
De Gruyter Open Ltd |
| publisher.none.fl_str_mv |
De Gruyter Open Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335496260222976 |
| score |
12.952241 |