Geometrical significance of the lowner-heinz inequality
- Autores
- Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- It is proven that the Lowner-Heinz inequality ∥A^tB^t∥ ∥AB∥^t, valid for all positive invertible operators A,B on the Hilbert space H and t ∈ [0, 1], has equivalent forms related to the Finsler structure of the space of positive invertible elements of L(H) or, more generally, of a unital C- algebra. In particular, the Lowner-Heinz inequality is equivalent to some type of "nonpositive curvature" property of that space.
Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina
Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina
Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
- Lowner-Heinz
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110899
Ver los metadatos del registro completo
| id |
CONICETDig_b98e35aa0a5e2e668a597c7bd2b6a818 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110899 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Geometrical significance of the lowner-heinz inequalityAndruchow, EstebanCorach, GustavoStojanoff, DemetrioLowner-Heinzhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1It is proven that the Lowner-Heinz inequality ∥A^tB^t∥ ∥AB∥^t, valid for all positive invertible operators A,B on the Hilbert space H and t ∈ [0, 1], has equivalent forms related to the Finsler structure of the space of positive invertible elements of L(H) or, more generally, of a unital C- algebra. In particular, the Lowner-Heinz inequality is equivalent to some type of "nonpositive curvature" property of that space.Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; ArgentinaFil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Stojanoff, Demetrio. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAmerican Mathematical Society2000-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110899Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Geometrical significance of the lowner-heinz inequality; American Mathematical Society; Proceedings of the American Mathematical Society; 128; 4; 3-2000; 1031-10370002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-04/home.htmlinfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-04/S0002-9939-99-05085-6/S0002-9939-99-05085-6.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:41:35Zoai:ri.conicet.gov.ar:11336/110899instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:41:35.96CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Geometrical significance of the lowner-heinz inequality |
| title |
Geometrical significance of the lowner-heinz inequality |
| spellingShingle |
Geometrical significance of the lowner-heinz inequality Andruchow, Esteban Lowner-Heinz |
| title_short |
Geometrical significance of the lowner-heinz inequality |
| title_full |
Geometrical significance of the lowner-heinz inequality |
| title_fullStr |
Geometrical significance of the lowner-heinz inequality |
| title_full_unstemmed |
Geometrical significance of the lowner-heinz inequality |
| title_sort |
Geometrical significance of the lowner-heinz inequality |
| dc.creator.none.fl_str_mv |
Andruchow, Esteban Corach, Gustavo Stojanoff, Demetrio |
| author |
Andruchow, Esteban |
| author_facet |
Andruchow, Esteban Corach, Gustavo Stojanoff, Demetrio |
| author_role |
author |
| author2 |
Corach, Gustavo Stojanoff, Demetrio |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Lowner-Heinz |
| topic |
Lowner-Heinz |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
It is proven that the Lowner-Heinz inequality ∥A^tB^t∥ ∥AB∥^t, valid for all positive invertible operators A,B on the Hilbert space H and t ∈ [0, 1], has equivalent forms related to the Finsler structure of the space of positive invertible elements of L(H) or, more generally, of a unital C- algebra. In particular, the Lowner-Heinz inequality is equivalent to some type of "nonpositive curvature" property of that space. Fil: Andruchow, Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de General Sarmiento; Argentina Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina Fil: Stojanoff, Demetrio. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
It is proven that the Lowner-Heinz inequality ∥A^tB^t∥ ∥AB∥^t, valid for all positive invertible operators A,B on the Hilbert space H and t ∈ [0, 1], has equivalent forms related to the Finsler structure of the space of positive invertible elements of L(H) or, more generally, of a unital C- algebra. In particular, the Lowner-Heinz inequality is equivalent to some type of "nonpositive curvature" property of that space. |
| publishDate |
2000 |
| dc.date.none.fl_str_mv |
2000-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110899 Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Geometrical significance of the lowner-heinz inequality; American Mathematical Society; Proceedings of the American Mathematical Society; 128; 4; 3-2000; 1031-1037 0002-9939 1088-6826 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/110899 |
| identifier_str_mv |
Andruchow, Esteban; Corach, Gustavo; Stojanoff, Demetrio; Geometrical significance of the lowner-heinz inequality; American Mathematical Society; Proceedings of the American Mathematical Society; 128; 4; 3-2000; 1031-1037 0002-9939 1088-6826 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-04/home.html info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2000-128-04/S0002-9939-99-05085-6/S0002-9939-99-05085-6.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782096343826432 |
| score |
12.982451 |