Fault diagnosis for an MSF desalination plant by using Bayesian networks
- Autores
- Tarifa, Enrique Eduardo; Álvaro, F. Núñez; Franco, Samuel; Mussati, Sergio Fabian
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work outlines the development of a fault diagnostic system for an MSF (multi-stage flash) desalination plant by using BNs (Bayesian networks). This diagnostic system processes the plant data to determine whether the process state is normal or not. In the latter case, the diagnostic system determines the cause of the abnormal process state; i.e., it finds out which is the fault that is affecting the supervised process. A BN is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. A BN readily handles situations where some data entries are missing. This paper determines both the structure and parameters of a BN intended for a diagnostic system. The implemented system is evaluated by using a dynamic simulator, which was developed for a real MSF desalination plant. Besides, the diagnostic system performance is compared with the performances of two other diagnostic systems. The obtained results show some advantages for the BN based diagnostic system.
Fil: Tarifa, Enrique Eduardo. Universidad Nacional de Jujuy; Argentina
Fil: Álvaro, F. Núñez. Universidad Nacional de Jujuy; Argentina
Fil: Franco, Samuel. Universidad Nacional de Jujuy; Argentina
Fil: Mussati, Sergio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
BAYESIAN NETWORKS
DYNAMIC SIMULATION
FAULT DIAGNOSIS
MSF DESALINATION PLANT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/192855
Ver los metadatos del registro completo
id |
CONICETDig_f2c54048eb8e3df33998017a47656421 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/192855 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Fault diagnosis for an MSF desalination plant by using Bayesian networksTarifa, Enrique EduardoÁlvaro, F. NúñezFranco, SamuelMussati, Sergio FabianBAYESIAN NETWORKSDYNAMIC SIMULATIONFAULT DIAGNOSISMSF DESALINATION PLANThttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This work outlines the development of a fault diagnostic system for an MSF (multi-stage flash) desalination plant by using BNs (Bayesian networks). This diagnostic system processes the plant data to determine whether the process state is normal or not. In the latter case, the diagnostic system determines the cause of the abnormal process state; i.e., it finds out which is the fault that is affecting the supervised process. A BN is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. A BN readily handles situations where some data entries are missing. This paper determines both the structure and parameters of a BN intended for a diagnostic system. The implemented system is evaluated by using a dynamic simulator, which was developed for a real MSF desalination plant. Besides, the diagnostic system performance is compared with the performances of two other diagnostic systems. The obtained results show some advantages for the BN based diagnostic system.Fil: Tarifa, Enrique Eduardo. Universidad Nacional de Jujuy; ArgentinaFil: Álvaro, F. Núñez. Universidad Nacional de Jujuy; ArgentinaFil: Franco, Samuel. Universidad Nacional de Jujuy; ArgentinaFil: Mussati, Sergio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaDesalination2010-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/192855Tarifa, Enrique Eduardo; Álvaro, F. Núñez; Franco, Samuel; Mussati, Sergio Fabian; Fault diagnosis for an MSF desalination plant by using Bayesian networks; Desalination; Desalination and Water Treatment; 21; 1-3; 9-2010; 102-1081944-3994CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5004/dwt.2010.1265info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.5004/dwt.2010.1265info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:13Zoai:ri.conicet.gov.ar:11336/192855instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:13.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Fault diagnosis for an MSF desalination plant by using Bayesian networks |
title |
Fault diagnosis for an MSF desalination plant by using Bayesian networks |
spellingShingle |
Fault diagnosis for an MSF desalination plant by using Bayesian networks Tarifa, Enrique Eduardo BAYESIAN NETWORKS DYNAMIC SIMULATION FAULT DIAGNOSIS MSF DESALINATION PLANT |
title_short |
Fault diagnosis for an MSF desalination plant by using Bayesian networks |
title_full |
Fault diagnosis for an MSF desalination plant by using Bayesian networks |
title_fullStr |
Fault diagnosis for an MSF desalination plant by using Bayesian networks |
title_full_unstemmed |
Fault diagnosis for an MSF desalination plant by using Bayesian networks |
title_sort |
Fault diagnosis for an MSF desalination plant by using Bayesian networks |
dc.creator.none.fl_str_mv |
Tarifa, Enrique Eduardo Álvaro, F. Núñez Franco, Samuel Mussati, Sergio Fabian |
author |
Tarifa, Enrique Eduardo |
author_facet |
Tarifa, Enrique Eduardo Álvaro, F. Núñez Franco, Samuel Mussati, Sergio Fabian |
author_role |
author |
author2 |
Álvaro, F. Núñez Franco, Samuel Mussati, Sergio Fabian |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BAYESIAN NETWORKS DYNAMIC SIMULATION FAULT DIAGNOSIS MSF DESALINATION PLANT |
topic |
BAYESIAN NETWORKS DYNAMIC SIMULATION FAULT DIAGNOSIS MSF DESALINATION PLANT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work outlines the development of a fault diagnostic system for an MSF (multi-stage flash) desalination plant by using BNs (Bayesian networks). This diagnostic system processes the plant data to determine whether the process state is normal or not. In the latter case, the diagnostic system determines the cause of the abnormal process state; i.e., it finds out which is the fault that is affecting the supervised process. A BN is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. A BN readily handles situations where some data entries are missing. This paper determines both the structure and parameters of a BN intended for a diagnostic system. The implemented system is evaluated by using a dynamic simulator, which was developed for a real MSF desalination plant. Besides, the diagnostic system performance is compared with the performances of two other diagnostic systems. The obtained results show some advantages for the BN based diagnostic system. Fil: Tarifa, Enrique Eduardo. Universidad Nacional de Jujuy; Argentina Fil: Álvaro, F. Núñez. Universidad Nacional de Jujuy; Argentina Fil: Franco, Samuel. Universidad Nacional de Jujuy; Argentina Fil: Mussati, Sergio Fabian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
This work outlines the development of a fault diagnostic system for an MSF (multi-stage flash) desalination plant by using BNs (Bayesian networks). This diagnostic system processes the plant data to determine whether the process state is normal or not. In the latter case, the diagnostic system determines the cause of the abnormal process state; i.e., it finds out which is the fault that is affecting the supervised process. A BN is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. A BN readily handles situations where some data entries are missing. This paper determines both the structure and parameters of a BN intended for a diagnostic system. The implemented system is evaluated by using a dynamic simulator, which was developed for a real MSF desalination plant. Besides, the diagnostic system performance is compared with the performances of two other diagnostic systems. The obtained results show some advantages for the BN based diagnostic system. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/192855 Tarifa, Enrique Eduardo; Álvaro, F. Núñez; Franco, Samuel; Mussati, Sergio Fabian; Fault diagnosis for an MSF desalination plant by using Bayesian networks; Desalination; Desalination and Water Treatment; 21; 1-3; 9-2010; 102-108 1944-3994 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/192855 |
identifier_str_mv |
Tarifa, Enrique Eduardo; Álvaro, F. Núñez; Franco, Samuel; Mussati, Sergio Fabian; Fault diagnosis for an MSF desalination plant by using Bayesian networks; Desalination; Desalination and Water Treatment; 21; 1-3; 9-2010; 102-108 1944-3994 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5004/dwt.2010.1265 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.5004/dwt.2010.1265 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Desalination |
publisher.none.fl_str_mv |
Desalination |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268778061103104 |
score |
13.13397 |