Processing ambiguous fault signals with three models of feedforward neural networks
- Autores
- Martínez, Sergio; Franco Dominguez, Samuel; Tarifa, Enrique E.
- Año de publicación
- 2010
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In the industrial technological field, running equipment or processes usually is monitored through automatic diagnosis systems. Within several Technologies for implementing such systems, the artificial neuronal networks are the most successful and widely spread. The data signals coming from the equipments or processes under supervision are interpreted by the neuronal networks so as to diagnose the presence of any fault. In this work three models of artificial neural networks and two methods of training are analyzed so as to establish, based on real experiences, the best combination of the neuronal model and the training method for recognizing in an efficient way the ambiguous patterns of faults.
Presentado en el I Workshop Procesamiento de señales y Sistemas de Tiempo Real (WPSTR)
Red de Universidades con Carreras en Informática (RedUNCI) - Materia
-
Ciencias Informáticas
Neural Networks
Diagnosis
Ambiguous Fault Signals
Optimized training
Signal processing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/19381
Ver los metadatos del registro completo
| id |
SEDICI_6af885fb83888376c6c16ffa23a3d319 |
|---|---|
| oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/19381 |
| network_acronym_str |
SEDICI |
| repository_id_str |
1329 |
| network_name_str |
SEDICI (UNLP) |
| spelling |
Processing ambiguous fault signals with three models of feedforward neural networksMartínez, SergioFranco Dominguez, SamuelTarifa, Enrique E.Ciencias InformáticasNeural NetworksDiagnosisAmbiguous Fault SignalsOptimized trainingSignal processingIn the industrial technological field, running equipment or processes usually is monitored through automatic diagnosis systems. Within several Technologies for implementing such systems, the artificial neuronal networks are the most successful and widely spread. The data signals coming from the equipments or processes under supervision are interpreted by the neuronal networks so as to diagnose the presence of any fault. In this work three models of artificial neural networks and two methods of training are analyzed so as to establish, based on real experiences, the best combination of the neuronal model and the training method for recognizing in an efficient way the ambiguous patterns of faults.Presentado en el I Workshop Procesamiento de señales y Sistemas de Tiempo Real (WPSTR)Red de Universidades con Carreras en Informática (RedUNCI)2010-10info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionObjeto de conferenciahttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdf1009-1019http://sedici.unlp.edu.ar/handle/10915/19381spainfo:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/ar/Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-10-22T16:35:26Zoai:sedici.unlp.edu.ar:10915/19381Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-10-22 16:35:26.923SEDICI (UNLP) - Universidad Nacional de La Platafalse |
| dc.title.none.fl_str_mv |
Processing ambiguous fault signals with three models of feedforward neural networks |
| title |
Processing ambiguous fault signals with three models of feedforward neural networks |
| spellingShingle |
Processing ambiguous fault signals with three models of feedforward neural networks Martínez, Sergio Ciencias Informáticas Neural Networks Diagnosis Ambiguous Fault Signals Optimized training Signal processing |
| title_short |
Processing ambiguous fault signals with three models of feedforward neural networks |
| title_full |
Processing ambiguous fault signals with three models of feedforward neural networks |
| title_fullStr |
Processing ambiguous fault signals with three models of feedforward neural networks |
| title_full_unstemmed |
Processing ambiguous fault signals with three models of feedforward neural networks |
| title_sort |
Processing ambiguous fault signals with three models of feedforward neural networks |
| dc.creator.none.fl_str_mv |
Martínez, Sergio Franco Dominguez, Samuel Tarifa, Enrique E. |
| author |
Martínez, Sergio |
| author_facet |
Martínez, Sergio Franco Dominguez, Samuel Tarifa, Enrique E. |
| author_role |
author |
| author2 |
Franco Dominguez, Samuel Tarifa, Enrique E. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Ciencias Informáticas Neural Networks Diagnosis Ambiguous Fault Signals Optimized training Signal processing |
| topic |
Ciencias Informáticas Neural Networks Diagnosis Ambiguous Fault Signals Optimized training Signal processing |
| dc.description.none.fl_txt_mv |
In the industrial technological field, running equipment or processes usually is monitored through automatic diagnosis systems. Within several Technologies for implementing such systems, the artificial neuronal networks are the most successful and widely spread. The data signals coming from the equipments or processes under supervision are interpreted by the neuronal networks so as to diagnose the presence of any fault. In this work three models of artificial neural networks and two methods of training are analyzed so as to establish, based on real experiences, the best combination of the neuronal model and the training method for recognizing in an efficient way the ambiguous patterns of faults. Presentado en el I Workshop Procesamiento de señales y Sistemas de Tiempo Real (WPSTR) Red de Universidades con Carreras en Informática (RedUNCI) |
| description |
In the industrial technological field, running equipment or processes usually is monitored through automatic diagnosis systems. Within several Technologies for implementing such systems, the artificial neuronal networks are the most successful and widely spread. The data signals coming from the equipments or processes under supervision are interpreted by the neuronal networks so as to diagnose the presence of any fault. In this work three models of artificial neural networks and two methods of training are analyzed so as to establish, based on real experiences, the best combination of the neuronal model and the training method for recognizing in an efficient way the ambiguous patterns of faults. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Objeto de conferencia http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/19381 |
| url |
http://sedici.unlp.edu.ar/handle/10915/19381 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/isbn/978-950-9474-49-9 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/ar/ Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Argentina (CC BY-NC-SA 2.5) |
| dc.format.none.fl_str_mv |
application/pdf 1009-1019 |
| dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
| reponame_str |
SEDICI (UNLP) |
| collection |
SEDICI (UNLP) |
| instname_str |
Universidad Nacional de La Plata |
| instacron_str |
UNLP |
| institution |
UNLP |
| repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
| repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
| _version_ |
1846782800961732608 |
| score |
12.982451 |