New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane

Autores
Bortolozzi, Juan Pablo; Banus, Ezequiel David; Milt, Viviana Guadalupe; Miro, Eduardo Ernesto
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Ceramic papers composed of silica–alumina fibers structured using colloidal suspensions as binders constitute interesting materials to be used as flexible supports of catalytic materials. The deposition of Ni as the active ingredient together with Zr or Ce promoters resulted in active and selective structured catalysts for the oxidative dehydrogenation of ethane; these structured catalysts also exhibited acceptable mechanical properties. The employed binder agents (nanoparticles of ceria, zirconia, or yttria-stabilized zirconia) homogeneously covered the fiber surface, contributing to the dual function of building a three-dimensional arrangement and favoring the anchoring of the catalytic formulations. The prepared papers showed nickel oxide as the active phase. The incorporation of cerium or zirconium as promoters enhanced the catalytic properties. The former element mainly produced an increase in ethane conversion, whereas the latter markedly improved ethylene selectivity. In both cases, an ethylene productivity was obtained in the promoted systems which was higher than that in the unpromoted samples. It is likely that the formation of the solid solutions Ni–Ce–O and Ni–Zr–O, as suggested by X-ray diffraction and laser Raman spectroscopy analyses, plays an important role in these effects. The best catalyst was the one containing nickel as the active phase, Ce as the promoter, and ZrY as the binder agent, for which ethylene productivity at 400 °C was ca. 513 g ethylene/(kgcat h). The binder agent addition was necessary to join the fibers, thus improving the mechanical properties of the papers, but they also affected the catalytic performance through the coverage of ceramic fibers and the resulting interaction with the catalytic compounds. The performed tensile index tests showed that the colloidal suspension of ceria produced papers with mechanical properties better than those of zirconia or zirconia–yttria because they exhibited greater resistance and flexibility.
Fil: Bortolozzi, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Banus, Ezequiel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Milt, Viviana Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Miro, Eduardo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Materia
Ethane Odh
Catalytic Ceramic Papers
Ni Catalyst
Ce And Zr Promoters
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/30989

id CONICETDig_b87c5ae7acdc21a72dbba05c22aee23c
oai_identifier_str oai:ri.conicet.gov.ar:11336/30989
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of EthaneBortolozzi, Juan PabloBanus, Ezequiel DavidMilt, Viviana GuadalupeMiro, Eduardo ErnestoEthane OdhCatalytic Ceramic PapersNi CatalystCe And Zr Promotershttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2https://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Ceramic papers composed of silica–alumina fibers structured using colloidal suspensions as binders constitute interesting materials to be used as flexible supports of catalytic materials. The deposition of Ni as the active ingredient together with Zr or Ce promoters resulted in active and selective structured catalysts for the oxidative dehydrogenation of ethane; these structured catalysts also exhibited acceptable mechanical properties. The employed binder agents (nanoparticles of ceria, zirconia, or yttria-stabilized zirconia) homogeneously covered the fiber surface, contributing to the dual function of building a three-dimensional arrangement and favoring the anchoring of the catalytic formulations. The prepared papers showed nickel oxide as the active phase. The incorporation of cerium or zirconium as promoters enhanced the catalytic properties. The former element mainly produced an increase in ethane conversion, whereas the latter markedly improved ethylene selectivity. In both cases, an ethylene productivity was obtained in the promoted systems which was higher than that in the unpromoted samples. It is likely that the formation of the solid solutions Ni–Ce–O and Ni–Zr–O, as suggested by X-ray diffraction and laser Raman spectroscopy analyses, plays an important role in these effects. The best catalyst was the one containing nickel as the active phase, Ce as the promoter, and ZrY as the binder agent, for which ethylene productivity at 400 °C was ca. 513 g ethylene/(kgcat h). The binder agent addition was necessary to join the fibers, thus improving the mechanical properties of the papers, but they also affected the catalytic performance through the coverage of ceramic fibers and the resulting interaction with the catalytic compounds. The performed tensile index tests showed that the colloidal suspension of ceria produced papers with mechanical properties better than those of zirconia or zirconia–yttria because they exhibited greater resistance and flexibility.Fil: Bortolozzi, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Banus, Ezequiel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Milt, Viviana Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaFil: Miro, Eduardo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; ArgentinaAmerican Chemical Society2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/30989Bortolozzi, Juan Pablo; Banus, Ezequiel David; Milt, Viviana Guadalupe; Miro, Eduardo Ernesto; New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane; American Chemical Society; Industrial & Engineering Chemical Research; 53; 45; 10-2014; 17570-175790888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie503154finfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie503154finfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:37Zoai:ri.conicet.gov.ar:11336/30989instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:38.06CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane
title New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane
spellingShingle New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane
Bortolozzi, Juan Pablo
Ethane Odh
Catalytic Ceramic Papers
Ni Catalyst
Ce And Zr Promoters
title_short New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane
title_full New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane
title_fullStr New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane
title_full_unstemmed New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane
title_sort New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane
dc.creator.none.fl_str_mv Bortolozzi, Juan Pablo
Banus, Ezequiel David
Milt, Viviana Guadalupe
Miro, Eduardo Ernesto
author Bortolozzi, Juan Pablo
author_facet Bortolozzi, Juan Pablo
Banus, Ezequiel David
Milt, Viviana Guadalupe
Miro, Eduardo Ernesto
author_role author
author2 Banus, Ezequiel David
Milt, Viviana Guadalupe
Miro, Eduardo Ernesto
author2_role author
author
author
dc.subject.none.fl_str_mv Ethane Odh
Catalytic Ceramic Papers
Ni Catalyst
Ce And Zr Promoters
topic Ethane Odh
Catalytic Ceramic Papers
Ni Catalyst
Ce And Zr Promoters
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Ceramic papers composed of silica–alumina fibers structured using colloidal suspensions as binders constitute interesting materials to be used as flexible supports of catalytic materials. The deposition of Ni as the active ingredient together with Zr or Ce promoters resulted in active and selective structured catalysts for the oxidative dehydrogenation of ethane; these structured catalysts also exhibited acceptable mechanical properties. The employed binder agents (nanoparticles of ceria, zirconia, or yttria-stabilized zirconia) homogeneously covered the fiber surface, contributing to the dual function of building a three-dimensional arrangement and favoring the anchoring of the catalytic formulations. The prepared papers showed nickel oxide as the active phase. The incorporation of cerium or zirconium as promoters enhanced the catalytic properties. The former element mainly produced an increase in ethane conversion, whereas the latter markedly improved ethylene selectivity. In both cases, an ethylene productivity was obtained in the promoted systems which was higher than that in the unpromoted samples. It is likely that the formation of the solid solutions Ni–Ce–O and Ni–Zr–O, as suggested by X-ray diffraction and laser Raman spectroscopy analyses, plays an important role in these effects. The best catalyst was the one containing nickel as the active phase, Ce as the promoter, and ZrY as the binder agent, for which ethylene productivity at 400 °C was ca. 513 g ethylene/(kgcat h). The binder agent addition was necessary to join the fibers, thus improving the mechanical properties of the papers, but they also affected the catalytic performance through the coverage of ceramic fibers and the resulting interaction with the catalytic compounds. The performed tensile index tests showed that the colloidal suspension of ceria produced papers with mechanical properties better than those of zirconia or zirconia–yttria because they exhibited greater resistance and flexibility.
Fil: Bortolozzi, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Banus, Ezequiel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Milt, Viviana Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
Fil: Miro, Eduardo Ernesto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigaciones en Catálisis y Petroquímica ; Argentina
description Ceramic papers composed of silica–alumina fibers structured using colloidal suspensions as binders constitute interesting materials to be used as flexible supports of catalytic materials. The deposition of Ni as the active ingredient together with Zr or Ce promoters resulted in active and selective structured catalysts for the oxidative dehydrogenation of ethane; these structured catalysts also exhibited acceptable mechanical properties. The employed binder agents (nanoparticles of ceria, zirconia, or yttria-stabilized zirconia) homogeneously covered the fiber surface, contributing to the dual function of building a three-dimensional arrangement and favoring the anchoring of the catalytic formulations. The prepared papers showed nickel oxide as the active phase. The incorporation of cerium or zirconium as promoters enhanced the catalytic properties. The former element mainly produced an increase in ethane conversion, whereas the latter markedly improved ethylene selectivity. In both cases, an ethylene productivity was obtained in the promoted systems which was higher than that in the unpromoted samples. It is likely that the formation of the solid solutions Ni–Ce–O and Ni–Zr–O, as suggested by X-ray diffraction and laser Raman spectroscopy analyses, plays an important role in these effects. The best catalyst was the one containing nickel as the active phase, Ce as the promoter, and ZrY as the binder agent, for which ethylene productivity at 400 °C was ca. 513 g ethylene/(kgcat h). The binder agent addition was necessary to join the fibers, thus improving the mechanical properties of the papers, but they also affected the catalytic performance through the coverage of ceramic fibers and the resulting interaction with the catalytic compounds. The performed tensile index tests showed that the colloidal suspension of ceria produced papers with mechanical properties better than those of zirconia or zirconia–yttria because they exhibited greater resistance and flexibility.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/30989
Bortolozzi, Juan Pablo; Banus, Ezequiel David; Milt, Viviana Guadalupe; Miro, Eduardo Ernesto; New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane; American Chemical Society; Industrial & Engineering Chemical Research; 53; 45; 10-2014; 17570-17579
0888-5885
CONICET Digital
CONICET
url http://hdl.handle.net/11336/30989
identifier_str_mv Bortolozzi, Juan Pablo; Banus, Ezequiel David; Milt, Viviana Guadalupe; Miro, Eduardo Ernesto; New Formulations of Ni-Containing Ceramic Papers to Enhance the Catalytic Performance for the Oxidative Dehydrogenation of Ethane; American Chemical Society; Industrial & Engineering Chemical Research; 53; 45; 10-2014; 17570-17579
0888-5885
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie503154f
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie503154f
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613456448192512
score 13.070432