Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry
- Autores
- Alhafez, Iyad Alabd; Deluigi, Orlando Raul; Tramontina Videla, Diego Ramiro; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Urbassek, Herbert M.
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We investigate by molecular dynamics simulation the mechanical behavior of concentrated alloys under nanoindentation for the special example of single-phase fcc Fe x Ni 1-x alloys. The indentation hardness is maximum for the equiatomic alloy, x= 0.5 . This finding is in agreement with experimental results on the strength of these alloys under uniaxial strain. We explain this finding with the increase of the unstable stacking fault energy in the alloys towards x= 0.5 . With increasing Fe content, loop emission from the plastic zone under the indenter becomes less pronounced and the plastic zone features a larger fraction of screw dislocation segments; simultaneously, the length of the dislocation network and the number of atoms in the stacking faults generated in the plastic zone increase. However, the volume of twinned regions in the plastic zone is highest for the elemental solids and decreases for the alloys. This feature is explained by the fact that twinning proceeds by the glide of dislocations on adjacent parallel lattice planes; this concerted motion is less efficient in the alloys. Finally, we find that surface imprints show increasing pile-up heights with increasing Fe content. The present results will be of interest for hardness engineering or generating hardness profiles in concentrated alloys.
Fil: Alhafez, Iyad Alabd. University of Kaiserslautern; Alemania. Clausthal University of Technology; Alemania
Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Instituto Imdea Energia.; España
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile
Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania - Materia
-
Molecular dynamics
Iron
Nickel
Indentation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/225829
Ver los metadatos del registro completo
id |
CONICETDig_b7f7b4c57b15973d2d51fb2798d117b0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/225829 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometryAlhafez, Iyad AlabdDeluigi, Orlando RaulTramontina Videla, Diego RamiroRuestes, Carlos JavierBringa, Eduardo MarcialUrbassek, Herbert M.Molecular dynamicsIronNickelIndentationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate by molecular dynamics simulation the mechanical behavior of concentrated alloys under nanoindentation for the special example of single-phase fcc Fe x Ni 1-x alloys. The indentation hardness is maximum for the equiatomic alloy, x= 0.5 . This finding is in agreement with experimental results on the strength of these alloys under uniaxial strain. We explain this finding with the increase of the unstable stacking fault energy in the alloys towards x= 0.5 . With increasing Fe content, loop emission from the plastic zone under the indenter becomes less pronounced and the plastic zone features a larger fraction of screw dislocation segments; simultaneously, the length of the dislocation network and the number of atoms in the stacking faults generated in the plastic zone increase. However, the volume of twinned regions in the plastic zone is highest for the elemental solids and decreases for the alloys. This feature is explained by the fact that twinning proceeds by the glide of dislocations on adjacent parallel lattice planes; this concerted motion is less efficient in the alloys. Finally, we find that surface imprints show increasing pile-up heights with increasing Fe content. The present results will be of interest for hardness engineering or generating hardness profiles in concentrated alloys.Fil: Alhafez, Iyad Alabd. University of Kaiserslautern; Alemania. Clausthal University of Technology; AlemaniaFil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Instituto Imdea Energia.; EspañaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; ChileFil: Urbassek, Herbert M.. University of Kaiserslautern; AlemaniaNature Research2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225829Alhafez, Iyad Alabd; Deluigi, Orlando Raul; Tramontina Videla, Diego Ramiro; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; et al.; Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry; Nature Research; Scientific Reports; 13; 1; 6-2023; 1-142045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-36899-3info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-36899-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:53:55Zoai:ri.conicet.gov.ar:11336/225829instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:53:56.082CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry |
title |
Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry |
spellingShingle |
Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry Alhafez, Iyad Alabd Molecular dynamics Iron Nickel Indentation |
title_short |
Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry |
title_full |
Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry |
title_fullStr |
Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry |
title_full_unstemmed |
Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry |
title_sort |
Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry |
dc.creator.none.fl_str_mv |
Alhafez, Iyad Alabd Deluigi, Orlando Raul Tramontina Videla, Diego Ramiro Ruestes, Carlos Javier Bringa, Eduardo Marcial Urbassek, Herbert M. |
author |
Alhafez, Iyad Alabd |
author_facet |
Alhafez, Iyad Alabd Deluigi, Orlando Raul Tramontina Videla, Diego Ramiro Ruestes, Carlos Javier Bringa, Eduardo Marcial Urbassek, Herbert M. |
author_role |
author |
author2 |
Deluigi, Orlando Raul Tramontina Videla, Diego Ramiro Ruestes, Carlos Javier Bringa, Eduardo Marcial Urbassek, Herbert M. |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Molecular dynamics Iron Nickel Indentation |
topic |
Molecular dynamics Iron Nickel Indentation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We investigate by molecular dynamics simulation the mechanical behavior of concentrated alloys under nanoindentation for the special example of single-phase fcc Fe x Ni 1-x alloys. The indentation hardness is maximum for the equiatomic alloy, x= 0.5 . This finding is in agreement with experimental results on the strength of these alloys under uniaxial strain. We explain this finding with the increase of the unstable stacking fault energy in the alloys towards x= 0.5 . With increasing Fe content, loop emission from the plastic zone under the indenter becomes less pronounced and the plastic zone features a larger fraction of screw dislocation segments; simultaneously, the length of the dislocation network and the number of atoms in the stacking faults generated in the plastic zone increase. However, the volume of twinned regions in the plastic zone is highest for the elemental solids and decreases for the alloys. This feature is explained by the fact that twinning proceeds by the glide of dislocations on adjacent parallel lattice planes; this concerted motion is less efficient in the alloys. Finally, we find that surface imprints show increasing pile-up heights with increasing Fe content. The present results will be of interest for hardness engineering or generating hardness profiles in concentrated alloys. Fil: Alhafez, Iyad Alabd. University of Kaiserslautern; Alemania. Clausthal University of Technology; Alemania Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Instituto Imdea Energia.; España Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania |
description |
We investigate by molecular dynamics simulation the mechanical behavior of concentrated alloys under nanoindentation for the special example of single-phase fcc Fe x Ni 1-x alloys. The indentation hardness is maximum for the equiatomic alloy, x= 0.5 . This finding is in agreement with experimental results on the strength of these alloys under uniaxial strain. We explain this finding with the increase of the unstable stacking fault energy in the alloys towards x= 0.5 . With increasing Fe content, loop emission from the plastic zone under the indenter becomes less pronounced and the plastic zone features a larger fraction of screw dislocation segments; simultaneously, the length of the dislocation network and the number of atoms in the stacking faults generated in the plastic zone increase. However, the volume of twinned regions in the plastic zone is highest for the elemental solids and decreases for the alloys. This feature is explained by the fact that twinning proceeds by the glide of dislocations on adjacent parallel lattice planes; this concerted motion is less efficient in the alloys. Finally, we find that surface imprints show increasing pile-up heights with increasing Fe content. The present results will be of interest for hardness engineering or generating hardness profiles in concentrated alloys. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/225829 Alhafez, Iyad Alabd; Deluigi, Orlando Raul; Tramontina Videla, Diego Ramiro; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; et al.; Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry; Nature Research; Scientific Reports; 13; 1; 6-2023; 1-14 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/225829 |
identifier_str_mv |
Alhafez, Iyad Alabd; Deluigi, Orlando Raul; Tramontina Videla, Diego Ramiro; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; et al.; Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry; Nature Research; Scientific Reports; 13; 1; 6-2023; 1-14 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-36899-3 info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-36899-3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Research |
publisher.none.fl_str_mv |
Nature Research |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083070395940864 |
score |
13.22299 |