Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry

Autores
Alhafez, Iyad Alabd; Deluigi, Orlando Raul; Tramontina Videla, Diego Ramiro; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; Urbassek, Herbert M.
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate by molecular dynamics simulation the mechanical behavior of concentrated alloys under nanoindentation for the special example of single-phase fcc Fe x Ni 1-x alloys. The indentation hardness is maximum for the equiatomic alloy, x= 0.5 . This finding is in agreement with experimental results on the strength of these alloys under uniaxial strain. We explain this finding with the increase of the unstable stacking fault energy in the alloys towards x= 0.5 . With increasing Fe content, loop emission from the plastic zone under the indenter becomes less pronounced and the plastic zone features a larger fraction of screw dislocation segments; simultaneously, the length of the dislocation network and the number of atoms in the stacking faults generated in the plastic zone increase. However, the volume of twinned regions in the plastic zone is highest for the elemental solids and decreases for the alloys. This feature is explained by the fact that twinning proceeds by the glide of dislocations on adjacent parallel lattice planes; this concerted motion is less efficient in the alloys. Finally, we find that surface imprints show increasing pile-up heights with increasing Fe content. The present results will be of interest for hardness engineering or generating hardness profiles in concentrated alloys.
Fil: Alhafez, Iyad Alabd. University of Kaiserslautern; Alemania. Clausthal University of Technology; Alemania
Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Instituto Imdea Energia.; España
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile
Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania
Materia
Molecular dynamics
Iron
Nickel
Indentation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/225829

id CONICETDig_b7f7b4c57b15973d2d51fb2798d117b0
oai_identifier_str oai:ri.conicet.gov.ar:11336/225829
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometryAlhafez, Iyad AlabdDeluigi, Orlando RaulTramontina Videla, Diego RamiroRuestes, Carlos JavierBringa, Eduardo MarcialUrbassek, Herbert M.Molecular dynamicsIronNickelIndentationhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate by molecular dynamics simulation the mechanical behavior of concentrated alloys under nanoindentation for the special example of single-phase fcc Fe x Ni 1-x alloys. The indentation hardness is maximum for the equiatomic alloy, x= 0.5 . This finding is in agreement with experimental results on the strength of these alloys under uniaxial strain. We explain this finding with the increase of the unstable stacking fault energy in the alloys towards x= 0.5 . With increasing Fe content, loop emission from the plastic zone under the indenter becomes less pronounced and the plastic zone features a larger fraction of screw dislocation segments; simultaneously, the length of the dislocation network and the number of atoms in the stacking faults generated in the plastic zone increase. However, the volume of twinned regions in the plastic zone is highest for the elemental solids and decreases for the alloys. This feature is explained by the fact that twinning proceeds by the glide of dislocations on adjacent parallel lattice planes; this concerted motion is less efficient in the alloys. Finally, we find that surface imprints show increasing pile-up heights with increasing Fe content. The present results will be of interest for hardness engineering or generating hardness profiles in concentrated alloys.Fil: Alhafez, Iyad Alabd. University of Kaiserslautern; Alemania. Clausthal University of Technology; AlemaniaFil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Instituto Imdea Energia.; EspañaFil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; ChileFil: Urbassek, Herbert M.. University of Kaiserslautern; AlemaniaNature Research2023-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225829Alhafez, Iyad Alabd; Deluigi, Orlando Raul; Tramontina Videla, Diego Ramiro; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; et al.; Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry; Nature Research; Scientific Reports; 13; 1; 6-2023; 1-142045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-36899-3info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-36899-3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:53:55Zoai:ri.conicet.gov.ar:11336/225829instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:53:56.082CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry
title Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry
spellingShingle Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry
Alhafez, Iyad Alabd
Molecular dynamics
Iron
Nickel
Indentation
title_short Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry
title_full Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry
title_fullStr Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry
title_full_unstemmed Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry
title_sort Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry
dc.creator.none.fl_str_mv Alhafez, Iyad Alabd
Deluigi, Orlando Raul
Tramontina Videla, Diego Ramiro
Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author Alhafez, Iyad Alabd
author_facet Alhafez, Iyad Alabd
Deluigi, Orlando Raul
Tramontina Videla, Diego Ramiro
Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author_role author
author2 Deluigi, Orlando Raul
Tramontina Videla, Diego Ramiro
Ruestes, Carlos Javier
Bringa, Eduardo Marcial
Urbassek, Herbert M.
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Molecular dynamics
Iron
Nickel
Indentation
topic Molecular dynamics
Iron
Nickel
Indentation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate by molecular dynamics simulation the mechanical behavior of concentrated alloys under nanoindentation for the special example of single-phase fcc Fe x Ni 1-x alloys. The indentation hardness is maximum for the equiatomic alloy, x= 0.5 . This finding is in agreement with experimental results on the strength of these alloys under uniaxial strain. We explain this finding with the increase of the unstable stacking fault energy in the alloys towards x= 0.5 . With increasing Fe content, loop emission from the plastic zone under the indenter becomes less pronounced and the plastic zone features a larger fraction of screw dislocation segments; simultaneously, the length of the dislocation network and the number of atoms in the stacking faults generated in the plastic zone increase. However, the volume of twinned regions in the plastic zone is highest for the elemental solids and decreases for the alloys. This feature is explained by the fact that twinning proceeds by the glide of dislocations on adjacent parallel lattice planes; this concerted motion is less efficient in the alloys. Finally, we find that surface imprints show increasing pile-up heights with increasing Fe content. The present results will be of interest for hardness engineering or generating hardness profiles in concentrated alloys.
Fil: Alhafez, Iyad Alabd. University of Kaiserslautern; Alemania. Clausthal University of Technology; Alemania
Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Tramontina Videla, Diego Ramiro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Ruestes, Carlos Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Interdisciplinario de Ciencias Básicas. - Universidad Nacional de Cuyo. Instituto Interdisciplinario de Ciencias Básicas; Argentina. Instituto Imdea Energia.; España
Fil: Bringa, Eduardo Marcial. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Universidad Mayor; Chile
Fil: Urbassek, Herbert M.. University of Kaiserslautern; Alemania
description We investigate by molecular dynamics simulation the mechanical behavior of concentrated alloys under nanoindentation for the special example of single-phase fcc Fe x Ni 1-x alloys. The indentation hardness is maximum for the equiatomic alloy, x= 0.5 . This finding is in agreement with experimental results on the strength of these alloys under uniaxial strain. We explain this finding with the increase of the unstable stacking fault energy in the alloys towards x= 0.5 . With increasing Fe content, loop emission from the plastic zone under the indenter becomes less pronounced and the plastic zone features a larger fraction of screw dislocation segments; simultaneously, the length of the dislocation network and the number of atoms in the stacking faults generated in the plastic zone increase. However, the volume of twinned regions in the plastic zone is highest for the elemental solids and decreases for the alloys. This feature is explained by the fact that twinning proceeds by the glide of dislocations on adjacent parallel lattice planes; this concerted motion is less efficient in the alloys. Finally, we find that surface imprints show increasing pile-up heights with increasing Fe content. The present results will be of interest for hardness engineering or generating hardness profiles in concentrated alloys.
publishDate 2023
dc.date.none.fl_str_mv 2023-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/225829
Alhafez, Iyad Alabd; Deluigi, Orlando Raul; Tramontina Videla, Diego Ramiro; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; et al.; Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry; Nature Research; Scientific Reports; 13; 1; 6-2023; 1-14
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/225829
identifier_str_mv Alhafez, Iyad Alabd; Deluigi, Orlando Raul; Tramontina Videla, Diego Ramiro; Ruestes, Carlos Javier; Bringa, Eduardo Marcial; et al.; Simulated nanoindentation into single-phase fcc Fe x Ni 1-x alloys predicts maximum hardness for equiatomic stoichiometry; Nature Research; Scientific Reports; 13; 1; 6-2023; 1-14
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-023-36899-3
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-023-36899-3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Research
publisher.none.fl_str_mv Nature Research
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083070395940864
score 13.22299