Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending
- Autores
- Seltzer, Rocío; Yiu-wing Mai; Frontini, Patricia Maria
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The creep behaviour of injection moulded PA 6/organoclay nanocomposites was studied by depth-sensing nanoindentation and DMA cantilever-bending. The glass transitions of PA 6 and its nanocomposites were decreased below room temperature upon saturation with water so that the materials could be tested in the rubbery regime. For nanoindentation creep on the skin and core regions of injection moulded samples, whilst organoclay improves the creep resistance of PA 6, the enhancement is due to the decrease of the initial compliance at zero time but the time-dependent creep is actually increased. In contrast, for cantilever-bending creep, organoclay reduces the creep compliance and the time-dependent creep in PA 6. It is suggested that the organoclay imparts a constraint effect on the PA 6 molecular chains, restricting their mobility in the bulk compared to the surface and hence improving their resistance to creep. A modified Halpin–Tsai equation was used to model their creep behaviour under these two loading configurations and compared to experimental data.
Fil: Seltzer, Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina. The University of Sydney; Australia
Fil: Yiu-wing Mai. The University of Sydney; Australia
Fil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina - Materia
-
Polymer-Matrix Composites (Pmcs)
Creep
Mechanical Testing
Depth-Sensing Indentation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/6296
Ver los metadatos del registro completo
id |
CONICETDig_529f576f5620c93151c4bdcee004a8c5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/6296 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bendingSeltzer, RocíoYiu-wing MaiFrontini, Patricia MariaPolymer-Matrix Composites (Pmcs)CreepMechanical TestingDepth-Sensing Indentationhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The creep behaviour of injection moulded PA 6/organoclay nanocomposites was studied by depth-sensing nanoindentation and DMA cantilever-bending. The glass transitions of PA 6 and its nanocomposites were decreased below room temperature upon saturation with water so that the materials could be tested in the rubbery regime. For nanoindentation creep on the skin and core regions of injection moulded samples, whilst organoclay improves the creep resistance of PA 6, the enhancement is due to the decrease of the initial compliance at zero time but the time-dependent creep is actually increased. In contrast, for cantilever-bending creep, organoclay reduces the creep compliance and the time-dependent creep in PA 6. It is suggested that the organoclay imparts a constraint effect on the PA 6 molecular chains, restricting their mobility in the bulk compared to the surface and hence improving their resistance to creep. A modified Halpin–Tsai equation was used to model their creep behaviour under these two loading configurations and compared to experimental data.Fil: Seltzer, Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina. The University of Sydney; AustraliaFil: Yiu-wing Mai. The University of Sydney; AustraliaFil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; ArgentinaElsevier2011-04-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/6296Seltzer, Rocío; Yiu-wing Mai; Frontini, Patricia Maria; Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending; Elsevier; Composites Part B: Engineering; 43; 1; 28-4-2011; 83-891359-8368enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359836811001764info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compositesb.2011.04.035info:eu-repo/semantics/altIdentifier/issn/1359-8368info:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:20Zoai:ri.conicet.gov.ar:11336/6296instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:20.971CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending |
title |
Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending |
spellingShingle |
Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending Seltzer, Rocío Polymer-Matrix Composites (Pmcs) Creep Mechanical Testing Depth-Sensing Indentation |
title_short |
Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending |
title_full |
Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending |
title_fullStr |
Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending |
title_full_unstemmed |
Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending |
title_sort |
Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending |
dc.creator.none.fl_str_mv |
Seltzer, Rocío Yiu-wing Mai Frontini, Patricia Maria |
author |
Seltzer, Rocío |
author_facet |
Seltzer, Rocío Yiu-wing Mai Frontini, Patricia Maria |
author_role |
author |
author2 |
Yiu-wing Mai Frontini, Patricia Maria |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Polymer-Matrix Composites (Pmcs) Creep Mechanical Testing Depth-Sensing Indentation |
topic |
Polymer-Matrix Composites (Pmcs) Creep Mechanical Testing Depth-Sensing Indentation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The creep behaviour of injection moulded PA 6/organoclay nanocomposites was studied by depth-sensing nanoindentation and DMA cantilever-bending. The glass transitions of PA 6 and its nanocomposites were decreased below room temperature upon saturation with water so that the materials could be tested in the rubbery regime. For nanoindentation creep on the skin and core regions of injection moulded samples, whilst organoclay improves the creep resistance of PA 6, the enhancement is due to the decrease of the initial compliance at zero time but the time-dependent creep is actually increased. In contrast, for cantilever-bending creep, organoclay reduces the creep compliance and the time-dependent creep in PA 6. It is suggested that the organoclay imparts a constraint effect on the PA 6 molecular chains, restricting their mobility in the bulk compared to the surface and hence improving their resistance to creep. A modified Halpin–Tsai equation was used to model their creep behaviour under these two loading configurations and compared to experimental data. Fil: Seltzer, Rocío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina. The University of Sydney; Australia Fil: Yiu-wing Mai. The University of Sydney; Australia Fil: Frontini, Patricia Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina |
description |
The creep behaviour of injection moulded PA 6/organoclay nanocomposites was studied by depth-sensing nanoindentation and DMA cantilever-bending. The glass transitions of PA 6 and its nanocomposites were decreased below room temperature upon saturation with water so that the materials could be tested in the rubbery regime. For nanoindentation creep on the skin and core regions of injection moulded samples, whilst organoclay improves the creep resistance of PA 6, the enhancement is due to the decrease of the initial compliance at zero time but the time-dependent creep is actually increased. In contrast, for cantilever-bending creep, organoclay reduces the creep compliance and the time-dependent creep in PA 6. It is suggested that the organoclay imparts a constraint effect on the PA 6 molecular chains, restricting their mobility in the bulk compared to the surface and hence improving their resistance to creep. A modified Halpin–Tsai equation was used to model their creep behaviour under these two loading configurations and compared to experimental data. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04-28 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/6296 Seltzer, Rocío; Yiu-wing Mai; Frontini, Patricia Maria; Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending; Elsevier; Composites Part B: Engineering; 43; 1; 28-4-2011; 83-89 1359-8368 |
url |
http://hdl.handle.net/11336/6296 |
identifier_str_mv |
Seltzer, Rocío; Yiu-wing Mai; Frontini, Patricia Maria; Creep behaviour of injection moulded polyamide 6/organoclay nanocomposites by nanoindentation and cantilever-bending; Elsevier; Composites Part B: Engineering; 43; 1; 28-4-2011; 83-89 1359-8368 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1359836811001764 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compositesb.2011.04.035 info:eu-repo/semantics/altIdentifier/issn/1359-8368 info:eu-repo/semantics/altIdentifier/doi/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613099990024192 |
score |
13.070432 |