Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands
- Autores
- Ferraro, Diego Omar; Ghersa, Claudio Marco
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A fuzzy-logic based model was built in order to assess the relative influence of different ecological and management drivers on glyphosate resistance risk (GRR) in Sorghum halepense (L.) Pers. The model was hierarchically structured in a bottom-up manner by combining 16 input variables throughout a logical network. Input data were related to 1) herbicide usage, 2) crop rotation, 3) landscape characterization, 4) weed dispersal, and 5) mean maximum and minimum seasonal temperature. Mean maximum and minimum seasonal temperatures and the dominance of glyphosate use were the variables that showed the highest sensitivity to input changes. Application of the model at a regional scale resulted in a wide range of GRR values. The lowest range values (lower than 0 and between 0 and 0.25) were represented in 5.5% and 21.5% of the cropping area, respectively. Intermediate GRR range (between 0.25 and 0.5) were assessed in 57.3% of the cropping area whilst the highest GRR range values (0.5e0.7) were represented in only 15.6% of the studied area. The assessment of trade-offs between different ecosystem functions through expert opinion can complement traditional analyses for predicting herbicide resistance risk based on solely the genetic aspect of the evolutionary process
Fil: Ferraro, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura; Argentina
Fil: Ghersa, Claudio Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Recursos Naturales y Ambiente. Catedra de Ecologia; Argentina - Materia
-
Fuzzy Logic
Glyhosate - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/4160
Ver los metadatos del registro completo
| id |
CONICETDig_b7f14690789bc5194979c21d98a3d502 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/4160 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplandsFerraro, Diego OmarGhersa, Claudio MarcoFuzzy LogicGlyhosatehttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4A fuzzy-logic based model was built in order to assess the relative influence of different ecological and management drivers on glyphosate resistance risk (GRR) in Sorghum halepense (L.) Pers. The model was hierarchically structured in a bottom-up manner by combining 16 input variables throughout a logical network. Input data were related to 1) herbicide usage, 2) crop rotation, 3) landscape characterization, 4) weed dispersal, and 5) mean maximum and minimum seasonal temperature. Mean maximum and minimum seasonal temperatures and the dominance of glyphosate use were the variables that showed the highest sensitivity to input changes. Application of the model at a regional scale resulted in a wide range of GRR values. The lowest range values (lower than 0 and between 0 and 0.25) were represented in 5.5% and 21.5% of the cropping area, respectively. Intermediate GRR range (between 0.25 and 0.5) were assessed in 57.3% of the cropping area whilst the highest GRR range values (0.5e0.7) were represented in only 15.6% of the studied area. The assessment of trade-offs between different ecosystem functions through expert opinion can complement traditional analyses for predicting herbicide resistance risk based on solely the genetic aspect of the evolutionary processFil: Ferraro, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura; ArgentinaFil: Ghersa, Claudio Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Recursos Naturales y Ambiente. Catedra de Ecologia; ArgentinaElsevier2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/4160Ferraro, Diego Omar; Ghersa, Claudio Marco; Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands; Elsevier; Crop Protection; 51; 9-2013; 32-390261-2194enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cropro.2013.04.004info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0261219413000926info:eu-repo/semantics/altIdentifier/issn/0261-2194info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:34:56Zoai:ri.conicet.gov.ar:11336/4160instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:34:57.045CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands |
| title |
Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands |
| spellingShingle |
Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands Ferraro, Diego Omar Fuzzy Logic Glyhosate |
| title_short |
Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands |
| title_full |
Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands |
| title_fullStr |
Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands |
| title_full_unstemmed |
Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands |
| title_sort |
Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands |
| dc.creator.none.fl_str_mv |
Ferraro, Diego Omar Ghersa, Claudio Marco |
| author |
Ferraro, Diego Omar |
| author_facet |
Ferraro, Diego Omar Ghersa, Claudio Marco |
| author_role |
author |
| author2 |
Ghersa, Claudio Marco |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Fuzzy Logic Glyhosate |
| topic |
Fuzzy Logic Glyhosate |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.1 https://purl.org/becyt/ford/4 |
| dc.description.none.fl_txt_mv |
A fuzzy-logic based model was built in order to assess the relative influence of different ecological and management drivers on glyphosate resistance risk (GRR) in Sorghum halepense (L.) Pers. The model was hierarchically structured in a bottom-up manner by combining 16 input variables throughout a logical network. Input data were related to 1) herbicide usage, 2) crop rotation, 3) landscape characterization, 4) weed dispersal, and 5) mean maximum and minimum seasonal temperature. Mean maximum and minimum seasonal temperatures and the dominance of glyphosate use were the variables that showed the highest sensitivity to input changes. Application of the model at a regional scale resulted in a wide range of GRR values. The lowest range values (lower than 0 and between 0 and 0.25) were represented in 5.5% and 21.5% of the cropping area, respectively. Intermediate GRR range (between 0.25 and 0.5) were assessed in 57.3% of the cropping area whilst the highest GRR range values (0.5e0.7) were represented in only 15.6% of the studied area. The assessment of trade-offs between different ecosystem functions through expert opinion can complement traditional analyses for predicting herbicide resistance risk based on solely the genetic aspect of the evolutionary process Fil: Ferraro, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Producción Vegetal. Cátedra de Cerealicultura; Argentina Fil: Ghersa, Claudio Marco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina. Universidad de Buenos Aires. Facultad de Agronomia. Departamento de Recursos Naturales y Ambiente. Catedra de Ecologia; Argentina |
| description |
A fuzzy-logic based model was built in order to assess the relative influence of different ecological and management drivers on glyphosate resistance risk (GRR) in Sorghum halepense (L.) Pers. The model was hierarchically structured in a bottom-up manner by combining 16 input variables throughout a logical network. Input data were related to 1) herbicide usage, 2) crop rotation, 3) landscape characterization, 4) weed dispersal, and 5) mean maximum and minimum seasonal temperature. Mean maximum and minimum seasonal temperatures and the dominance of glyphosate use were the variables that showed the highest sensitivity to input changes. Application of the model at a regional scale resulted in a wide range of GRR values. The lowest range values (lower than 0 and between 0 and 0.25) were represented in 5.5% and 21.5% of the cropping area, respectively. Intermediate GRR range (between 0.25 and 0.5) were assessed in 57.3% of the cropping area whilst the highest GRR range values (0.5e0.7) were represented in only 15.6% of the studied area. The assessment of trade-offs between different ecosystem functions through expert opinion can complement traditional analyses for predicting herbicide resistance risk based on solely the genetic aspect of the evolutionary process |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/4160 Ferraro, Diego Omar; Ghersa, Claudio Marco; Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands; Elsevier; Crop Protection; 51; 9-2013; 32-39 0261-2194 |
| url |
http://hdl.handle.net/11336/4160 |
| identifier_str_mv |
Ferraro, Diego Omar; Ghersa, Claudio Marco; Fuzzy assessment of herbicide resistance risk: Glyphosate-resistant johnsongrass, Sorghum halepense (L.) Pers., in Argentina's croplands; Elsevier; Crop Protection; 51; 9-2013; 32-39 0261-2194 |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cropro.2013.04.004 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0261219413000926 info:eu-repo/semantics/altIdentifier/issn/0261-2194 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier |
| publisher.none.fl_str_mv |
Elsevier |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781979278704640 |
| score |
12.982451 |