A Tonnetz model for pentachords
- Autores
- Piovan, Luis Amadeo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This article deals with the construction of surfaces that are suitable for representing pentachords or 5-pitch segments that are in the same T/I class. It is a generalization of the well known Öttingen-Riemann torus for triads of neo-Riemannian theories. Two pentachords are near if they differ by a particular set of contextual inversions and the whole contextual group of inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A description of the surfaces as coverings of a particular Tiling is given in the twelve-tone enharmonic scale case.
Fil: Piovan, Luis Amadeo. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina - Materia
-
TONNETZ
NEO-RIEMANN NETWORK
PENTACHORD
CONTEXTUAL GROUP
TESSELLATION
POINCARÉ DISK
DAVID LEWIN
CHARLES KOECHLIN
IGOR STRAVINSKY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/10112
Ver los metadatos del registro completo
id |
CONICETDig_b7c0537c48073a7f9dee3d37c84646b3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/10112 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Tonnetz model for pentachordsPiovan, Luis AmadeoTONNETZNEO-RIEMANN NETWORKPENTACHORDCONTEXTUAL GROUPTESSELLATIONPOINCARÉ DISKDAVID LEWINCHARLES KOECHLINIGOR STRAVINSKYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This article deals with the construction of surfaces that are suitable for representing pentachords or 5-pitch segments that are in the same T/I class. It is a generalization of the well known Öttingen-Riemann torus for triads of neo-Riemannian theories. Two pentachords are near if they differ by a particular set of contextual inversions and the whole contextual group of inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A description of the surfaces as coverings of a particular Tiling is given in the twelve-tone enharmonic scale case.Fil: Piovan, Luis Amadeo. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); ArgentinaTaylor & Francis Ltd2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/10112Piovan, Luis Amadeo; A Tonnetz model for pentachords; Taylor & Francis Ltd; Journal Of Mathematics And Music; 7; 1; 4-2013; 29-531745-9737enginfo:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/17459737.2013.769637info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1301.4255info:eu-repo/semantics/altIdentifier/doi/10.1080/17459737.2013.769637info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:33:18Zoai:ri.conicet.gov.ar:11336/10112instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:33:18.98CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Tonnetz model for pentachords |
title |
A Tonnetz model for pentachords |
spellingShingle |
A Tonnetz model for pentachords Piovan, Luis Amadeo TONNETZ NEO-RIEMANN NETWORK PENTACHORD CONTEXTUAL GROUP TESSELLATION POINCARÉ DISK DAVID LEWIN CHARLES KOECHLIN IGOR STRAVINSKY |
title_short |
A Tonnetz model for pentachords |
title_full |
A Tonnetz model for pentachords |
title_fullStr |
A Tonnetz model for pentachords |
title_full_unstemmed |
A Tonnetz model for pentachords |
title_sort |
A Tonnetz model for pentachords |
dc.creator.none.fl_str_mv |
Piovan, Luis Amadeo |
author |
Piovan, Luis Amadeo |
author_facet |
Piovan, Luis Amadeo |
author_role |
author |
dc.subject.none.fl_str_mv |
TONNETZ NEO-RIEMANN NETWORK PENTACHORD CONTEXTUAL GROUP TESSELLATION POINCARÉ DISK DAVID LEWIN CHARLES KOECHLIN IGOR STRAVINSKY |
topic |
TONNETZ NEO-RIEMANN NETWORK PENTACHORD CONTEXTUAL GROUP TESSELLATION POINCARÉ DISK DAVID LEWIN CHARLES KOECHLIN IGOR STRAVINSKY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
This article deals with the construction of surfaces that are suitable for representing pentachords or 5-pitch segments that are in the same T/I class. It is a generalization of the well known Öttingen-Riemann torus for triads of neo-Riemannian theories. Two pentachords are near if they differ by a particular set of contextual inversions and the whole contextual group of inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A description of the surfaces as coverings of a particular Tiling is given in the twelve-tone enharmonic scale case. Fil: Piovan, Luis Amadeo. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Matemática Bahía Blanca (i); Argentina |
description |
This article deals with the construction of surfaces that are suitable for representing pentachords or 5-pitch segments that are in the same T/I class. It is a generalization of the well known Öttingen-Riemann torus for triads of neo-Riemannian theories. Two pentachords are near if they differ by a particular set of contextual inversions and the whole contextual group of inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A description of the surfaces as coverings of a particular Tiling is given in the twelve-tone enharmonic scale case. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/10112 Piovan, Luis Amadeo; A Tonnetz model for pentachords; Taylor & Francis Ltd; Journal Of Mathematics And Music; 7; 1; 4-2013; 29-53 1745-9737 |
url |
http://hdl.handle.net/11336/10112 |
identifier_str_mv |
Piovan, Luis Amadeo; A Tonnetz model for pentachords; Taylor & Francis Ltd; Journal Of Mathematics And Music; 7; 1; 4-2013; 29-53 1745-9737 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/abs/10.1080/17459737.2013.769637 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1301.4255 info:eu-repo/semantics/altIdentifier/doi/10.1080/17459737.2013.769637 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis Ltd |
publisher.none.fl_str_mv |
Taylor & Francis Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613022304174080 |
score |
13.070432 |