The automorphism group of the s-stable Kneser graphs

Autores
Torres, Pablo Daniel
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For k,s≥2, the s-stable Kneser graphs are the graphs with vertex set the k-subsets S of {1,…,n} such that the circular distance between any two elements in S is at least s and two vertices are adjacent if and only if the corresponding k-subsets are disjoint. Braun showed that for n≥2k+1 the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order 2n. In this paper we generalize this result by proving that for s≥2 and n≥sk+1 the automorphism group of the s-stable Kneser graphs also is isomorphic to the dihedral group of order 2n.
Fil: Torres, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Automorphism Group
Stable Kneser Graph
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/50371

id CONICETDig_b781f4de7e3d060b0c20f3774b21d118
oai_identifier_str oai:ri.conicet.gov.ar:11336/50371
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The automorphism group of the s-stable Kneser graphsTorres, Pablo DanielAutomorphism GroupStable Kneser Graphhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For k,s≥2, the s-stable Kneser graphs are the graphs with vertex set the k-subsets S of {1,…,n} such that the circular distance between any two elements in S is at least s and two vertices are adjacent if and only if the corresponding k-subsets are disjoint. Braun showed that for n≥2k+1 the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order 2n. In this paper we generalize this result by proving that for s≥2 and n≥sk+1 the automorphism group of the s-stable Kneser graphs also is isomorphic to the dihedral group of order 2n.Fil: Torres, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50371Torres, Pablo Daniel; The automorphism group of the s-stable Kneser graphs; Academic Press Inc Elsevier Science; Advances In Applied Mathematics; 89; 8-2017; 67-750196-8858CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aam.2017.04.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0196885817300416info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:37Zoai:ri.conicet.gov.ar:11336/50371instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:37.927CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The automorphism group of the s-stable Kneser graphs
title The automorphism group of the s-stable Kneser graphs
spellingShingle The automorphism group of the s-stable Kneser graphs
Torres, Pablo Daniel
Automorphism Group
Stable Kneser Graph
title_short The automorphism group of the s-stable Kneser graphs
title_full The automorphism group of the s-stable Kneser graphs
title_fullStr The automorphism group of the s-stable Kneser graphs
title_full_unstemmed The automorphism group of the s-stable Kneser graphs
title_sort The automorphism group of the s-stable Kneser graphs
dc.creator.none.fl_str_mv Torres, Pablo Daniel
author Torres, Pablo Daniel
author_facet Torres, Pablo Daniel
author_role author
dc.subject.none.fl_str_mv Automorphism Group
Stable Kneser Graph
topic Automorphism Group
Stable Kneser Graph
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For k,s≥2, the s-stable Kneser graphs are the graphs with vertex set the k-subsets S of {1,…,n} such that the circular distance between any two elements in S is at least s and two vertices are adjacent if and only if the corresponding k-subsets are disjoint. Braun showed that for n≥2k+1 the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order 2n. In this paper we generalize this result by proving that for s≥2 and n≥sk+1 the automorphism group of the s-stable Kneser graphs also is isomorphic to the dihedral group of order 2n.
Fil: Torres, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description For k,s≥2, the s-stable Kneser graphs are the graphs with vertex set the k-subsets S of {1,…,n} such that the circular distance between any two elements in S is at least s and two vertices are adjacent if and only if the corresponding k-subsets are disjoint. Braun showed that for n≥2k+1 the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order 2n. In this paper we generalize this result by proving that for s≥2 and n≥sk+1 the automorphism group of the s-stable Kneser graphs also is isomorphic to the dihedral group of order 2n.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/50371
Torres, Pablo Daniel; The automorphism group of the s-stable Kneser graphs; Academic Press Inc Elsevier Science; Advances In Applied Mathematics; 89; 8-2017; 67-75
0196-8858
CONICET Digital
CONICET
url http://hdl.handle.net/11336/50371
identifier_str_mv Torres, Pablo Daniel; The automorphism group of the s-stable Kneser graphs; Academic Press Inc Elsevier Science; Advances In Applied Mathematics; 89; 8-2017; 67-75
0196-8858
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aam.2017.04.001
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0196885817300416
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980345305104384
score 12.993085