The automorphism group of the s-stable Kneser graphs
- Autores
- Torres, Pablo Daniel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For k,s≥2, the s-stable Kneser graphs are the graphs with vertex set the k-subsets S of {1,…,n} such that the circular distance between any two elements in S is at least s and two vertices are adjacent if and only if the corresponding k-subsets are disjoint. Braun showed that for n≥2k+1 the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order 2n. In this paper we generalize this result by proving that for s≥2 and n≥sk+1 the automorphism group of the s-stable Kneser graphs also is isomorphic to the dihedral group of order 2n.
Fil: Torres, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Automorphism Group
Stable Kneser Graph - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/50371
Ver los metadatos del registro completo
id |
CONICETDig_b781f4de7e3d060b0c20f3774b21d118 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/50371 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The automorphism group of the s-stable Kneser graphsTorres, Pablo DanielAutomorphism GroupStable Kneser Graphhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For k,s≥2, the s-stable Kneser graphs are the graphs with vertex set the k-subsets S of {1,…,n} such that the circular distance between any two elements in S is at least s and two vertices are adjacent if and only if the corresponding k-subsets are disjoint. Braun showed that for n≥2k+1 the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order 2n. In this paper we generalize this result by proving that for s≥2 and n≥sk+1 the automorphism group of the s-stable Kneser graphs also is isomorphic to the dihedral group of order 2n.Fil: Torres, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/50371Torres, Pablo Daniel; The automorphism group of the s-stable Kneser graphs; Academic Press Inc Elsevier Science; Advances In Applied Mathematics; 89; 8-2017; 67-750196-8858CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.aam.2017.04.001info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0196885817300416info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:37Zoai:ri.conicet.gov.ar:11336/50371instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:37.927CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The automorphism group of the s-stable Kneser graphs |
title |
The automorphism group of the s-stable Kneser graphs |
spellingShingle |
The automorphism group of the s-stable Kneser graphs Torres, Pablo Daniel Automorphism Group Stable Kneser Graph |
title_short |
The automorphism group of the s-stable Kneser graphs |
title_full |
The automorphism group of the s-stable Kneser graphs |
title_fullStr |
The automorphism group of the s-stable Kneser graphs |
title_full_unstemmed |
The automorphism group of the s-stable Kneser graphs |
title_sort |
The automorphism group of the s-stable Kneser graphs |
dc.creator.none.fl_str_mv |
Torres, Pablo Daniel |
author |
Torres, Pablo Daniel |
author_facet |
Torres, Pablo Daniel |
author_role |
author |
dc.subject.none.fl_str_mv |
Automorphism Group Stable Kneser Graph |
topic |
Automorphism Group Stable Kneser Graph |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For k,s≥2, the s-stable Kneser graphs are the graphs with vertex set the k-subsets S of {1,…,n} such that the circular distance between any two elements in S is at least s and two vertices are adjacent if and only if the corresponding k-subsets are disjoint. Braun showed that for n≥2k+1 the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order 2n. In this paper we generalize this result by proving that for s≥2 and n≥sk+1 the automorphism group of the s-stable Kneser graphs also is isomorphic to the dihedral group of order 2n. Fil: Torres, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
For k,s≥2, the s-stable Kneser graphs are the graphs with vertex set the k-subsets S of {1,…,n} such that the circular distance between any two elements in S is at least s and two vertices are adjacent if and only if the corresponding k-subsets are disjoint. Braun showed that for n≥2k+1 the automorphism group of the 2-stable Kneser graphs (Schrijver graphs) is isomorphic to the dihedral group of order 2n. In this paper we generalize this result by proving that for s≥2 and n≥sk+1 the automorphism group of the s-stable Kneser graphs also is isomorphic to the dihedral group of order 2n. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/50371 Torres, Pablo Daniel; The automorphism group of the s-stable Kneser graphs; Academic Press Inc Elsevier Science; Advances In Applied Mathematics; 89; 8-2017; 67-75 0196-8858 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/50371 |
identifier_str_mv |
Torres, Pablo Daniel; The automorphism group of the s-stable Kneser graphs; Academic Press Inc Elsevier Science; Advances In Applied Mathematics; 89; 8-2017; 67-75 0196-8858 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.aam.2017.04.001 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0196885817300416 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980345305104384 |
score |
12.993085 |