Encoding upper nasal airway structure with U-Net for respiratory healthcare applications
- Autores
- Pazos, Bruno Alfredo; Navarro, Jose Pablo; de Azevedo, Soledad; Delrieux, Claudio Augusto; Gonzalez-Jose, Rolando
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- The human upper nasal airway is an anatomical structure with a complex geometry that performs essential functions required by the rest of the respiratory system. An accurate and precise segmentation process that captures its intricate shape and variability becomes indispensable to fully understand its performance under different circumstances and to study its anatomy from multiple perspectives. As currently performed, the manual or semi-automatic segmentation process for these structures is extremely time-consuming, may demand extensive manual post-processing steps to correct over-or under-segmentation, and is subject to considerable intra- and inter-operator variance. Further, in developing countries, healthcare institutions modernize their medical imaging devices at different rates;thus, specialists and proposed solutions have to deal with a wide range of image characteristics and quality variability to execute their diagnostics. In this paper we develop an automatic segmentation strategy for the human upper nasal airway, based on a deep convolutional network trained with >3000 CT scans acquired from different devices of a national hospital in Argentina, Hospital Italiano de Buenos Aires (2010). This process achieves a remarkable preliminary results with a low error rate (0.07%) and an acceptable similarity score (86.9%).
Fil: Pazos, Bruno Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina
Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina
Fil: de Azevedo, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina
Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Laboratorio de Ciencias de Las Imágenes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gonzalez-Jose, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina
3rd Practical Machine Learning for Developing Countries: learning under limited/low resource scenarios
Argentina
Comité organizador del Practical Machine Learning for Developing Countries - Materia
-
SEGMENTATION
3D RECONSTRUCTION
CONVOLUTIONAL NEURAL NETWORKS
RESPIRATORY HEALTHCARE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/225584
Ver los metadatos del registro completo
id |
CONICETDig_b647c2d6a2990f672979e05176d147a8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/225584 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Encoding upper nasal airway structure with U-Net for respiratory healthcare applicationsPazos, Bruno AlfredoNavarro, Jose Pablode Azevedo, SoledadDelrieux, Claudio AugustoGonzalez-Jose, RolandoSEGMENTATION3D RECONSTRUCTIONCONVOLUTIONAL NEURAL NETWORKSRESPIRATORY HEALTHCAREhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The human upper nasal airway is an anatomical structure with a complex geometry that performs essential functions required by the rest of the respiratory system. An accurate and precise segmentation process that captures its intricate shape and variability becomes indispensable to fully understand its performance under different circumstances and to study its anatomy from multiple perspectives. As currently performed, the manual or semi-automatic segmentation process for these structures is extremely time-consuming, may demand extensive manual post-processing steps to correct over-or under-segmentation, and is subject to considerable intra- and inter-operator variance. Further, in developing countries, healthcare institutions modernize their medical imaging devices at different rates;thus, specialists and proposed solutions have to deal with a wide range of image characteristics and quality variability to execute their diagnostics. In this paper we develop an automatic segmentation strategy for the human upper nasal airway, based on a deep convolutional network trained with >3000 CT scans acquired from different devices of a national hospital in Argentina, Hospital Italiano de Buenos Aires (2010). This process achieves a remarkable preliminary results with a low error rate (0.07%) and an acceptable similarity score (86.9%).Fil: Pazos, Bruno Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; ArgentinaFil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; ArgentinaFil: de Azevedo, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; ArgentinaFil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Laboratorio de Ciencias de Las Imágenes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gonzalez-Jose, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina3rd Practical Machine Learning for Developing Countries: learning under limited/low resource scenariosArgentinaComité organizador del Practical Machine Learning for Developing CountriesComité organizador del Practical Machine Learning for Developing Countries2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectWorkshopBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/225584Encoding upper nasal airway structure with U-Net for respiratory healthcare applications; 3rd Practical Machine Learning for Developing Countries: learning under limited/low resource scenarios; Argentina; 2022; 1-7CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pml4dc.github.io/iclr2022/papers.htmlInternacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:14Zoai:ri.conicet.gov.ar:11336/225584instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:14.523CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications |
title |
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications |
spellingShingle |
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications Pazos, Bruno Alfredo SEGMENTATION 3D RECONSTRUCTION CONVOLUTIONAL NEURAL NETWORKS RESPIRATORY HEALTHCARE |
title_short |
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications |
title_full |
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications |
title_fullStr |
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications |
title_full_unstemmed |
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications |
title_sort |
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications |
dc.creator.none.fl_str_mv |
Pazos, Bruno Alfredo Navarro, Jose Pablo de Azevedo, Soledad Delrieux, Claudio Augusto Gonzalez-Jose, Rolando |
author |
Pazos, Bruno Alfredo |
author_facet |
Pazos, Bruno Alfredo Navarro, Jose Pablo de Azevedo, Soledad Delrieux, Claudio Augusto Gonzalez-Jose, Rolando |
author_role |
author |
author2 |
Navarro, Jose Pablo de Azevedo, Soledad Delrieux, Claudio Augusto Gonzalez-Jose, Rolando |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
SEGMENTATION 3D RECONSTRUCTION CONVOLUTIONAL NEURAL NETWORKS RESPIRATORY HEALTHCARE |
topic |
SEGMENTATION 3D RECONSTRUCTION CONVOLUTIONAL NEURAL NETWORKS RESPIRATORY HEALTHCARE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The human upper nasal airway is an anatomical structure with a complex geometry that performs essential functions required by the rest of the respiratory system. An accurate and precise segmentation process that captures its intricate shape and variability becomes indispensable to fully understand its performance under different circumstances and to study its anatomy from multiple perspectives. As currently performed, the manual or semi-automatic segmentation process for these structures is extremely time-consuming, may demand extensive manual post-processing steps to correct over-or under-segmentation, and is subject to considerable intra- and inter-operator variance. Further, in developing countries, healthcare institutions modernize their medical imaging devices at different rates;thus, specialists and proposed solutions have to deal with a wide range of image characteristics and quality variability to execute their diagnostics. In this paper we develop an automatic segmentation strategy for the human upper nasal airway, based on a deep convolutional network trained with >3000 CT scans acquired from different devices of a national hospital in Argentina, Hospital Italiano de Buenos Aires (2010). This process achieves a remarkable preliminary results with a low error rate (0.07%) and an acceptable similarity score (86.9%). Fil: Pazos, Bruno Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina Fil: Navarro, Jose Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina Fil: de Azevedo, Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina Fil: Delrieux, Claudio Augusto. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras. Laboratorio de Ciencias de Las Imágenes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gonzalez-Jose, Rolando. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina 3rd Practical Machine Learning for Developing Countries: learning under limited/low resource scenarios Argentina Comité organizador del Practical Machine Learning for Developing Countries |
description |
The human upper nasal airway is an anatomical structure with a complex geometry that performs essential functions required by the rest of the respiratory system. An accurate and precise segmentation process that captures its intricate shape and variability becomes indispensable to fully understand its performance under different circumstances and to study its anatomy from multiple perspectives. As currently performed, the manual or semi-automatic segmentation process for these structures is extremely time-consuming, may demand extensive manual post-processing steps to correct over-or under-segmentation, and is subject to considerable intra- and inter-operator variance. Further, in developing countries, healthcare institutions modernize their medical imaging devices at different rates;thus, specialists and proposed solutions have to deal with a wide range of image characteristics and quality variability to execute their diagnostics. In this paper we develop an automatic segmentation strategy for the human upper nasal airway, based on a deep convolutional network trained with >3000 CT scans acquired from different devices of a national hospital in Argentina, Hospital Italiano de Buenos Aires (2010). This process achieves a remarkable preliminary results with a low error rate (0.07%) and an acceptable similarity score (86.9%). |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Workshop Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/225584 Encoding upper nasal airway structure with U-Net for respiratory healthcare applications; 3rd Practical Machine Learning for Developing Countries: learning under limited/low resource scenarios; Argentina; 2022; 1-7 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/225584 |
identifier_str_mv |
Encoding upper nasal airway structure with U-Net for respiratory healthcare applications; 3rd Practical Machine Learning for Developing Countries: learning under limited/low resource scenarios; Argentina; 2022; 1-7 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pml4dc.github.io/iclr2022/papers.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
Comité organizador del Practical Machine Learning for Developing Countries |
publisher.none.fl_str_mv |
Comité organizador del Practical Machine Learning for Developing Countries |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613096329445376 |
score |
13.070432 |