ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture
- Autores
- Gaggion Zulpo, Rafael Nicolás; Ariel, Federico Damian; Daric, Vladimir; Lambert, Éric; Legendre, Simon; Roulé, Thomas; Camoirano, Alejandra; Milone, Diego Humberto; Crespi, Martin; Blein, Thomas; Ferrante, Enzo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Deep learning methods have outperformed previous techniques in most computer vision tasks, including image-based plant phenotyping. However, massive data collection of root traits and the development of associated artificial intelligence approaches have been hampered by the inaccessibility of the rhizosphere. Here we present ChronoRoot, a system that combines 3D-printed open-hardware with deep segmentation networks for high temporal resolution phenotyping of plant roots in agarized medium. Results: We developed a novel deep learning-based root extraction method that leverages the latest advances in convolutional neural networks for image segmentation and incorporates temporal consistency into the root system architecture reconstruction process. Automatic extraction of phenotypic parameters from sequences of images allowed a comprehensive characterization of the root system growth dynamics. Furthermore, novel time-associated parameters emerged from the analysis of spectral features derived from temporal signals. Conclusions: Our work shows that the combination of machine intelligence methods and a 3D-printed device expands the possibilities of root high-throughput phenotyping for genetics and natural variation studies, as well as the screening of clock-related mutants, revealing novel root traits.
Fil: Gaggion Zulpo, Rafael Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Ariel, Federico Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Daric, Vladimir. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia
Fil: Lambert, Éric. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia
Fil: Legendre, Simon. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia
Fil: Roulé, Thomas. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia
Fil: Camoirano, Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Crespi, Martin. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia
Fil: Blein, Thomas. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia
Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina - Materia
-
3D-PRINTED HARDWARE
CONVOLUTIONAL NEURAL NETWORKS
IMAGE SEGMENTATION
ROOT SYSTEM ARCHITECTURE
TEMPORAL PHENOTYPING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182752
Ver los metadatos del registro completo
id |
CONICETDig_51868c91932bb050e95b6e181216e94f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182752 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architectureGaggion Zulpo, Rafael NicolásAriel, Federico DamianDaric, VladimirLambert, ÉricLegendre, SimonRoulé, ThomasCamoirano, AlejandraMilone, Diego HumbertoCrespi, MartinBlein, ThomasFerrante, Enzo3D-PRINTED HARDWARECONVOLUTIONAL NEURAL NETWORKSIMAGE SEGMENTATIONROOT SYSTEM ARCHITECTURETEMPORAL PHENOTYPINGhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Background: Deep learning methods have outperformed previous techniques in most computer vision tasks, including image-based plant phenotyping. However, massive data collection of root traits and the development of associated artificial intelligence approaches have been hampered by the inaccessibility of the rhizosphere. Here we present ChronoRoot, a system that combines 3D-printed open-hardware with deep segmentation networks for high temporal resolution phenotyping of plant roots in agarized medium. Results: We developed a novel deep learning-based root extraction method that leverages the latest advances in convolutional neural networks for image segmentation and incorporates temporal consistency into the root system architecture reconstruction process. Automatic extraction of phenotypic parameters from sequences of images allowed a comprehensive characterization of the root system growth dynamics. Furthermore, novel time-associated parameters emerged from the analysis of spectral features derived from temporal signals. Conclusions: Our work shows that the combination of machine intelligence methods and a 3D-printed device expands the possibilities of root high-throughput phenotyping for genetics and natural variation studies, as well as the screening of clock-related mutants, revealing novel root traits.Fil: Gaggion Zulpo, Rafael Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Ariel, Federico Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Daric, Vladimir. University Paris-Saclay; Francia. University of Paris Bâtiment; FranciaFil: Lambert, Éric. University Paris-Saclay; Francia. University of Paris Bâtiment; FranciaFil: Legendre, Simon. University Paris-Saclay; Francia. University of Paris Bâtiment; FranciaFil: Roulé, Thomas. University Paris-Saclay; Francia. University of Paris Bâtiment; FranciaFil: Camoirano, Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Crespi, Martin. University Paris-Saclay; Francia. University of Paris Bâtiment; FranciaFil: Blein, Thomas. University Paris-Saclay; Francia. University of Paris Bâtiment; FranciaFil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaOxford Academic2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182752Gaggion Zulpo, Rafael Nicolás; Ariel, Federico Damian; Daric, Vladimir; Lambert, Éric; Legendre, Simon; et al.; ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture; Oxford Academic; GigaScience; 10; 7; 7-2021; 1-152047-217XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gigascience/article/10/7/giab052/6324285info:eu-repo/semantics/altIdentifier/doi/10.1093/gigascience/giab052info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:29:53Zoai:ri.conicet.gov.ar:11336/182752instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:29:54.218CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture |
title |
ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture |
spellingShingle |
ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture Gaggion Zulpo, Rafael Nicolás 3D-PRINTED HARDWARE CONVOLUTIONAL NEURAL NETWORKS IMAGE SEGMENTATION ROOT SYSTEM ARCHITECTURE TEMPORAL PHENOTYPING |
title_short |
ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture |
title_full |
ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture |
title_fullStr |
ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture |
title_full_unstemmed |
ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture |
title_sort |
ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture |
dc.creator.none.fl_str_mv |
Gaggion Zulpo, Rafael Nicolás Ariel, Federico Damian Daric, Vladimir Lambert, Éric Legendre, Simon Roulé, Thomas Camoirano, Alejandra Milone, Diego Humberto Crespi, Martin Blein, Thomas Ferrante, Enzo |
author |
Gaggion Zulpo, Rafael Nicolás |
author_facet |
Gaggion Zulpo, Rafael Nicolás Ariel, Federico Damian Daric, Vladimir Lambert, Éric Legendre, Simon Roulé, Thomas Camoirano, Alejandra Milone, Diego Humberto Crespi, Martin Blein, Thomas Ferrante, Enzo |
author_role |
author |
author2 |
Ariel, Federico Damian Daric, Vladimir Lambert, Éric Legendre, Simon Roulé, Thomas Camoirano, Alejandra Milone, Diego Humberto Crespi, Martin Blein, Thomas Ferrante, Enzo |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
3D-PRINTED HARDWARE CONVOLUTIONAL NEURAL NETWORKS IMAGE SEGMENTATION ROOT SYSTEM ARCHITECTURE TEMPORAL PHENOTYPING |
topic |
3D-PRINTED HARDWARE CONVOLUTIONAL NEURAL NETWORKS IMAGE SEGMENTATION ROOT SYSTEM ARCHITECTURE TEMPORAL PHENOTYPING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: Deep learning methods have outperformed previous techniques in most computer vision tasks, including image-based plant phenotyping. However, massive data collection of root traits and the development of associated artificial intelligence approaches have been hampered by the inaccessibility of the rhizosphere. Here we present ChronoRoot, a system that combines 3D-printed open-hardware with deep segmentation networks for high temporal resolution phenotyping of plant roots in agarized medium. Results: We developed a novel deep learning-based root extraction method that leverages the latest advances in convolutional neural networks for image segmentation and incorporates temporal consistency into the root system architecture reconstruction process. Automatic extraction of phenotypic parameters from sequences of images allowed a comprehensive characterization of the root system growth dynamics. Furthermore, novel time-associated parameters emerged from the analysis of spectral features derived from temporal signals. Conclusions: Our work shows that the combination of machine intelligence methods and a 3D-printed device expands the possibilities of root high-throughput phenotyping for genetics and natural variation studies, as well as the screening of clock-related mutants, revealing novel root traits. Fil: Gaggion Zulpo, Rafael Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Ariel, Federico Damian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Daric, Vladimir. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia Fil: Lambert, Éric. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia Fil: Legendre, Simon. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia Fil: Roulé, Thomas. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia Fil: Camoirano, Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Agrobiotecnología del Litoral. Universidad Nacional del Litoral. Instituto de Agrobiotecnología del Litoral; Argentina Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina Fil: Crespi, Martin. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia Fil: Blein, Thomas. University Paris-Saclay; Francia. University of Paris Bâtiment; Francia Fil: Ferrante, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina |
description |
Background: Deep learning methods have outperformed previous techniques in most computer vision tasks, including image-based plant phenotyping. However, massive data collection of root traits and the development of associated artificial intelligence approaches have been hampered by the inaccessibility of the rhizosphere. Here we present ChronoRoot, a system that combines 3D-printed open-hardware with deep segmentation networks for high temporal resolution phenotyping of plant roots in agarized medium. Results: We developed a novel deep learning-based root extraction method that leverages the latest advances in convolutional neural networks for image segmentation and incorporates temporal consistency into the root system architecture reconstruction process. Automatic extraction of phenotypic parameters from sequences of images allowed a comprehensive characterization of the root system growth dynamics. Furthermore, novel time-associated parameters emerged from the analysis of spectral features derived from temporal signals. Conclusions: Our work shows that the combination of machine intelligence methods and a 3D-printed device expands the possibilities of root high-throughput phenotyping for genetics and natural variation studies, as well as the screening of clock-related mutants, revealing novel root traits. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182752 Gaggion Zulpo, Rafael Nicolás; Ariel, Federico Damian; Daric, Vladimir; Lambert, Éric; Legendre, Simon; et al.; ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture; Oxford Academic; GigaScience; 10; 7; 7-2021; 1-15 2047-217X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182752 |
identifier_str_mv |
Gaggion Zulpo, Rafael Nicolás; Ariel, Federico Damian; Daric, Vladimir; Lambert, Éric; Legendre, Simon; et al.; ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture; Oxford Academic; GigaScience; 10; 7; 7-2021; 1-15 2047-217X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/gigascience/article/10/7/giab052/6324285 info:eu-repo/semantics/altIdentifier/doi/10.1093/gigascience/giab052 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford Academic |
publisher.none.fl_str_mv |
Oxford Academic |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082772666417152 |
score |
13.216834 |