Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators
- Autores
- Dallos Santos, Dionicio Pastor
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Using Leray-Schauder degree theory and the method of upper andlower solutions we establish existence and multiplicity of solutions for problemsof the form(ϕ(u0))0 = f(t, u, u0)u(0) = u(T) = u0(0),where ϕ is an increasing homeomorphism such that ϕ(0) = 0, and f is acontinuous function.
Fil: Dallos Santos, Dionicio Pastor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
MIXED PROBLEMS
LERAY-SCHAUDER DEGREE
MULTIPLE SOLUTIONS
LOWER AND UPPER SOLUTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146953
Ver los metadatos del registro completo
id |
CONICETDig_b58a8bb5aecfbedd636374b454ad6f1c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146953 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multiple solutions for mixed boundary value problems with ϕ-Laplacian operatorsDallos Santos, Dionicio PastorMIXED PROBLEMSLERAY-SCHAUDER DEGREEMULTIPLE SOLUTIONSLOWER AND UPPER SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Using Leray-Schauder degree theory and the method of upper andlower solutions we establish existence and multiplicity of solutions for problemsof the form(ϕ(u0))0 = f(t, u, u0)u(0) = u(T) = u0(0),where ϕ is an increasing homeomorphism such that ϕ(0) = 0, and f is acontinuous function.Fil: Dallos Santos, Dionicio Pastor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaEditorial board2020-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146953Dallos Santos, Dionicio Pastor; Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators; Editorial board; Electronic Journal of Differential Equations; 2020; 67; 6-2020; 1-81072-6691CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2020/67/santos.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:22Zoai:ri.conicet.gov.ar:11336/146953instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:22.343CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators |
title |
Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators |
spellingShingle |
Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators Dallos Santos, Dionicio Pastor MIXED PROBLEMS LERAY-SCHAUDER DEGREE MULTIPLE SOLUTIONS LOWER AND UPPER SOLUTIONS |
title_short |
Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators |
title_full |
Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators |
title_fullStr |
Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators |
title_full_unstemmed |
Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators |
title_sort |
Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators |
dc.creator.none.fl_str_mv |
Dallos Santos, Dionicio Pastor |
author |
Dallos Santos, Dionicio Pastor |
author_facet |
Dallos Santos, Dionicio Pastor |
author_role |
author |
dc.subject.none.fl_str_mv |
MIXED PROBLEMS LERAY-SCHAUDER DEGREE MULTIPLE SOLUTIONS LOWER AND UPPER SOLUTIONS |
topic |
MIXED PROBLEMS LERAY-SCHAUDER DEGREE MULTIPLE SOLUTIONS LOWER AND UPPER SOLUTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Using Leray-Schauder degree theory and the method of upper andlower solutions we establish existence and multiplicity of solutions for problemsof the form(ϕ(u0))0 = f(t, u, u0)u(0) = u(T) = u0(0),where ϕ is an increasing homeomorphism such that ϕ(0) = 0, and f is acontinuous function. Fil: Dallos Santos, Dionicio Pastor. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Using Leray-Schauder degree theory and the method of upper andlower solutions we establish existence and multiplicity of solutions for problemsof the form(ϕ(u0))0 = f(t, u, u0)u(0) = u(T) = u0(0),where ϕ is an increasing homeomorphism such that ϕ(0) = 0, and f is acontinuous function. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146953 Dallos Santos, Dionicio Pastor; Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators; Editorial board; Electronic Journal of Differential Equations; 2020; 67; 6-2020; 1-8 1072-6691 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146953 |
identifier_str_mv |
Dallos Santos, Dionicio Pastor; Multiple solutions for mixed boundary value problems with ϕ-Laplacian operators; Editorial board; Electronic Journal of Differential Equations; 2020; 67; 6-2020; 1-8 1072-6691 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ejde.math.txstate.edu/Volumes/2020/67/santos.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Editorial board |
publisher.none.fl_str_mv |
Editorial board |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613140113784832 |
score |
13.070432 |