Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions
- Autores
- Bernardis, Ana Lucia; Lorente Dominguez, María; Riveros, Maria Silvina
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study inequalities with weights for fractional operators Tαgiven by convolution with a kernel Kαwhich is supposed to satisfy some size condition and a fractional Hörmander type condition. As it is done for singular integrals, the conditions on the kernel have been generalized from the scale of Lebesgue spaces to that of Orlicz spaces. Our fractional operators include as particular cases the classical fractional integral Iα, fractional integrals associated to an homogeneous function and fractional integrals given by a Fourier multiplier.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Lorente Dominguez, María. Universidad de Málaga; España
Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Bmo
Commutators
Fractional Operators
HÖRmander'S Condition of Young Type
Muckenhoupt Weights
Two-Weight Estimates - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68154
Ver los metadatos del registro completo
id |
CONICETDig_b4f18b6fac67b63cac73eaa1be1553d4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68154 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditionsBernardis, Ana LuciaLorente Dominguez, MaríaRiveros, Maria SilvinaBmoCommutatorsFractional OperatorsHÖRmander'S Condition of Young TypeMuckenhoupt WeightsTwo-Weight Estimateshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study inequalities with weights for fractional operators Tαgiven by convolution with a kernel Kαwhich is supposed to satisfy some size condition and a fractional Hörmander type condition. As it is done for singular integrals, the conditions on the kernel have been generalized from the scale of Lebesgue spaces to that of Orlicz spaces. Our fractional operators include as particular cases the classical fractional integral Iα, fractional integrals associated to an homogeneous function and fractional integrals given by a Fourier multiplier.Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Lorente Dominguez, María. Universidad de Málaga; EspañaFil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElement2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68154Bernardis, Ana Lucia; Lorente Dominguez, María; Riveros, Maria Silvina; Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions ; Element; Mathematical Inequalities & Applications; 14; 4; 10-2011; 881-8951331-4343CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7153/mia-14-73info:eu-repo/semantics/altIdentifier/url/http://mia.ele-math.com/14-73/Weighted-inequalities-for-fractional-integral-operators-with-kernel-satisfying-Hormander-type-conditionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:57Zoai:ri.conicet.gov.ar:11336/68154instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:58.056CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions |
title |
Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions |
spellingShingle |
Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions Bernardis, Ana Lucia Bmo Commutators Fractional Operators HÖRmander'S Condition of Young Type Muckenhoupt Weights Two-Weight Estimates |
title_short |
Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions |
title_full |
Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions |
title_fullStr |
Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions |
title_full_unstemmed |
Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions |
title_sort |
Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions |
dc.creator.none.fl_str_mv |
Bernardis, Ana Lucia Lorente Dominguez, María Riveros, Maria Silvina |
author |
Bernardis, Ana Lucia |
author_facet |
Bernardis, Ana Lucia Lorente Dominguez, María Riveros, Maria Silvina |
author_role |
author |
author2 |
Lorente Dominguez, María Riveros, Maria Silvina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Bmo Commutators Fractional Operators HÖRmander'S Condition of Young Type Muckenhoupt Weights Two-Weight Estimates |
topic |
Bmo Commutators Fractional Operators HÖRmander'S Condition of Young Type Muckenhoupt Weights Two-Weight Estimates |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study inequalities with weights for fractional operators Tαgiven by convolution with a kernel Kαwhich is supposed to satisfy some size condition and a fractional Hörmander type condition. As it is done for singular integrals, the conditions on the kernel have been generalized from the scale of Lebesgue spaces to that of Orlicz spaces. Our fractional operators include as particular cases the classical fractional integral Iα, fractional integrals associated to an homogeneous function and fractional integrals given by a Fourier multiplier. Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Lorente Dominguez, María. Universidad de Málaga; España Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
In this paper we study inequalities with weights for fractional operators Tαgiven by convolution with a kernel Kαwhich is supposed to satisfy some size condition and a fractional Hörmander type condition. As it is done for singular integrals, the conditions on the kernel have been generalized from the scale of Lebesgue spaces to that of Orlicz spaces. Our fractional operators include as particular cases the classical fractional integral Iα, fractional integrals associated to an homogeneous function and fractional integrals given by a Fourier multiplier. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68154 Bernardis, Ana Lucia; Lorente Dominguez, María; Riveros, Maria Silvina; Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions ; Element; Mathematical Inequalities & Applications; 14; 4; 10-2011; 881-895 1331-4343 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68154 |
identifier_str_mv |
Bernardis, Ana Lucia; Lorente Dominguez, María; Riveros, Maria Silvina; Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions ; Element; Mathematical Inequalities & Applications; 14; 4; 10-2011; 881-895 1331-4343 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.7153/mia-14-73 info:eu-repo/semantics/altIdentifier/url/http://mia.ele-math.com/14-73/Weighted-inequalities-for-fractional-integral-operators-with-kernel-satisfying-Hormander-type-conditions |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Element |
publisher.none.fl_str_mv |
Element |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980118932226048 |
score |
12.993085 |