Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions

Autores
Bernardis, Ana Lucia; Lorente Dominguez, María; Riveros, Maria Silvina
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study inequalities with weights for fractional operators Tαgiven by convolution with a kernel Kαwhich is supposed to satisfy some size condition and a fractional Hörmander type condition. As it is done for singular integrals, the conditions on the kernel have been generalized from the scale of Lebesgue spaces to that of Orlicz spaces. Our fractional operators include as particular cases the classical fractional integral Iα, fractional integrals associated to an homogeneous function and fractional integrals given by a Fourier multiplier.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Lorente Dominguez, María. Universidad de Málaga; España
Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Bmo
Commutators
Fractional Operators
HÖRmander'S Condition of Young Type
Muckenhoupt Weights
Two-Weight Estimates
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/68154

id CONICETDig_b4f18b6fac67b63cac73eaa1be1553d4
oai_identifier_str oai:ri.conicet.gov.ar:11336/68154
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditionsBernardis, Ana LuciaLorente Dominguez, MaríaRiveros, Maria SilvinaBmoCommutatorsFractional OperatorsHÖRmander'S Condition of Young TypeMuckenhoupt WeightsTwo-Weight Estimateshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study inequalities with weights for fractional operators Tαgiven by convolution with a kernel Kαwhich is supposed to satisfy some size condition and a fractional Hörmander type condition. As it is done for singular integrals, the conditions on the kernel have been generalized from the scale of Lebesgue spaces to that of Orlicz spaces. Our fractional operators include as particular cases the classical fractional integral Iα, fractional integrals associated to an homogeneous function and fractional integrals given by a Fourier multiplier.Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Lorente Dominguez, María. Universidad de Málaga; EspañaFil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaElement2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68154Bernardis, Ana Lucia; Lorente Dominguez, María; Riveros, Maria Silvina; Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions ; Element; Mathematical Inequalities & Applications; 14; 4; 10-2011; 881-8951331-4343CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.7153/mia-14-73info:eu-repo/semantics/altIdentifier/url/http://mia.ele-math.com/14-73/Weighted-inequalities-for-fractional-integral-operators-with-kernel-satisfying-Hormander-type-conditionsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:57Zoai:ri.conicet.gov.ar:11336/68154instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:58.056CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions
title Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions
spellingShingle Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions
Bernardis, Ana Lucia
Bmo
Commutators
Fractional Operators
HÖRmander'S Condition of Young Type
Muckenhoupt Weights
Two-Weight Estimates
title_short Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions
title_full Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions
title_fullStr Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions
title_full_unstemmed Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions
title_sort Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions
dc.creator.none.fl_str_mv Bernardis, Ana Lucia
Lorente Dominguez, María
Riveros, Maria Silvina
author Bernardis, Ana Lucia
author_facet Bernardis, Ana Lucia
Lorente Dominguez, María
Riveros, Maria Silvina
author_role author
author2 Lorente Dominguez, María
Riveros, Maria Silvina
author2_role author
author
dc.subject.none.fl_str_mv Bmo
Commutators
Fractional Operators
HÖRmander'S Condition of Young Type
Muckenhoupt Weights
Two-Weight Estimates
topic Bmo
Commutators
Fractional Operators
HÖRmander'S Condition of Young Type
Muckenhoupt Weights
Two-Weight Estimates
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we study inequalities with weights for fractional operators Tαgiven by convolution with a kernel Kαwhich is supposed to satisfy some size condition and a fractional Hörmander type condition. As it is done for singular integrals, the conditions on the kernel have been generalized from the scale of Lebesgue spaces to that of Orlicz spaces. Our fractional operators include as particular cases the classical fractional integral Iα, fractional integrals associated to an homogeneous function and fractional integrals given by a Fourier multiplier.
Fil: Bernardis, Ana Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Lorente Dominguez, María. Universidad de Málaga; España
Fil: Riveros, Maria Silvina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description In this paper we study inequalities with weights for fractional operators Tαgiven by convolution with a kernel Kαwhich is supposed to satisfy some size condition and a fractional Hörmander type condition. As it is done for singular integrals, the conditions on the kernel have been generalized from the scale of Lebesgue spaces to that of Orlicz spaces. Our fractional operators include as particular cases the classical fractional integral Iα, fractional integrals associated to an homogeneous function and fractional integrals given by a Fourier multiplier.
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/68154
Bernardis, Ana Lucia; Lorente Dominguez, María; Riveros, Maria Silvina; Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions ; Element; Mathematical Inequalities & Applications; 14; 4; 10-2011; 881-895
1331-4343
CONICET Digital
CONICET
url http://hdl.handle.net/11336/68154
identifier_str_mv Bernardis, Ana Lucia; Lorente Dominguez, María; Riveros, Maria Silvina; Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions ; Element; Mathematical Inequalities & Applications; 14; 4; 10-2011; 881-895
1331-4343
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.7153/mia-14-73
info:eu-repo/semantics/altIdentifier/url/http://mia.ele-math.com/14-73/Weighted-inequalities-for-fractional-integral-operators-with-kernel-satisfying-Hormander-type-conditions
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Element
publisher.none.fl_str_mv Element
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980118932226048
score 12.993085