An asymptotic formula for representations of integers by indefinite hermitian forms
- Autores
- Lauret, Emilio Agustin
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We fix a maximal order O in F = R, C or H, and an F-hermitian form Q of signature (n, 1) with coefficients in O. Let k ∈ N. By applying a lattice point theorem on an n-dimensional F-hyperbolic space, we give an asymptotic formula with an error term, as t → +∞, for the number Nt;(Q,-k) of integral solutions x ∈ On+1 of the equation Q[x] = -k satisfying |xn+1| ≤ t.
Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Hyperbolic Lattice Point Theorem
Representation by Hermitian Forms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/39855
Ver los metadatos del registro completo
id |
CONICETDig_4ee34f61c7b9e01e5efcd38596c9088b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/39855 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An asymptotic formula for representations of integers by indefinite hermitian formsLauret, Emilio AgustinHyperbolic Lattice Point TheoremRepresentation by Hermitian Formshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We fix a maximal order O in F = R, C or H, and an F-hermitian form Q of signature (n, 1) with coefficients in O. Let k ∈ N. By applying a lattice point theorem on an n-dimensional F-hyperbolic space, we give an asymptotic formula with an error term, as t → +∞, for the number Nt;(Q,-k) of integral solutions x ∈ On+1 of the equation Q[x] = -k satisfying |xn+1| ≤ t.Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaAmerican Mathematical Society2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/39855Lauret, Emilio Agustin; An asymptotic formula for representations of integers by indefinite hermitian forms; American Mathematical Society; Proceedings of the American Mathematical Society; 142; 1; 1-2014; 1-140002-9939CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2013-11726-0info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2014-142-01/S0002-9939-2013-11726-0/home.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:56Zoai:ri.conicet.gov.ar:11336/39855instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:56.299CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An asymptotic formula for representations of integers by indefinite hermitian forms |
title |
An asymptotic formula for representations of integers by indefinite hermitian forms |
spellingShingle |
An asymptotic formula for representations of integers by indefinite hermitian forms Lauret, Emilio Agustin Hyperbolic Lattice Point Theorem Representation by Hermitian Forms |
title_short |
An asymptotic formula for representations of integers by indefinite hermitian forms |
title_full |
An asymptotic formula for representations of integers by indefinite hermitian forms |
title_fullStr |
An asymptotic formula for representations of integers by indefinite hermitian forms |
title_full_unstemmed |
An asymptotic formula for representations of integers by indefinite hermitian forms |
title_sort |
An asymptotic formula for representations of integers by indefinite hermitian forms |
dc.creator.none.fl_str_mv |
Lauret, Emilio Agustin |
author |
Lauret, Emilio Agustin |
author_facet |
Lauret, Emilio Agustin |
author_role |
author |
dc.subject.none.fl_str_mv |
Hyperbolic Lattice Point Theorem Representation by Hermitian Forms |
topic |
Hyperbolic Lattice Point Theorem Representation by Hermitian Forms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We fix a maximal order O in F = R, C or H, and an F-hermitian form Q of signature (n, 1) with coefficients in O. Let k ∈ N. By applying a lattice point theorem on an n-dimensional F-hyperbolic space, we give an asymptotic formula with an error term, as t → +∞, for the number Nt;(Q,-k) of integral solutions x ∈ On+1 of the equation Q[x] = -k satisfying |xn+1| ≤ t. Fil: Lauret, Emilio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We fix a maximal order O in F = R, C or H, and an F-hermitian form Q of signature (n, 1) with coefficients in O. Let k ∈ N. By applying a lattice point theorem on an n-dimensional F-hyperbolic space, we give an asymptotic formula with an error term, as t → +∞, for the number Nt;(Q,-k) of integral solutions x ∈ On+1 of the equation Q[x] = -k satisfying |xn+1| ≤ t. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/39855 Lauret, Emilio Agustin; An asymptotic formula for representations of integers by indefinite hermitian forms; American Mathematical Society; Proceedings of the American Mathematical Society; 142; 1; 1-2014; 1-14 0002-9939 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/39855 |
identifier_str_mv |
Lauret, Emilio Agustin; An asymptotic formula for representations of integers by indefinite hermitian forms; American Mathematical Society; Proceedings of the American Mathematical Society; 142; 1; 1-2014; 1-14 0002-9939 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-2013-11726-0 info:eu-repo/semantics/altIdentifier/url/http://www.ams.org/journals/proc/2014-142-01/S0002-9939-2013-11726-0/home.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613351094616064 |
score |
13.070432 |